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Measurement-based quantum computation with continuous variables in an optical setup shows great promise
toward implementation of large-scale quantum computation, where the time-domain multiplexing approach
enables us to generate the large-scale cluster state used to perform measurement-based quantum computation.
To make effective use of the advantage of the time-domain multiplexing approach, in this paper, we propose the
method to generate the large-scale three-dimensional cluster state which is a platform for topologically protected
measurement-based quantum computation. Our method combines a time-domain multiplexing approach with a
divide-and-conquer approach and has two advantages for implementing large-scale quantum computation. First,
the squeezing level for verification of the entanglement of the three-dimensional cluster states is experimentally
feasible. The second advantage is the robustness against analog errors derived from the finite squeezing of
continuous variables during topologically protected measurement-based quantum computation. Therefore, our
method is a promising approach to implement large-scale quantum computation with continuous variables.
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I. INTRODUCTION

Quantum computation has a great deal of potential to
efficiently solve some hard problems for conventional com-
puters [1,2]. To realize large-scale quantum computation,
measurement-based quantum computation (MBQC) is one
of the most promising quantum computation models, where
universal quantum computation can be implemented with only
adaptive and local single-qubit measurements on a large-scale
cluster state [3,4]. Among the candidates for quantum states,
continuous variables in an optical system have shown great
potential for the generation of large-scale cluster states. In
fact, the generation of large-scale one- and two-dimensional
cluster states has been reported in Refs. [5,6] and Refs. [7,8],
respectively, where universal MBQC with continuous vari-
ables is performed on the two-dimensional cluster state [9].
More recently, arbitrary single-mode Gaussian operations
over 100 steps have been demonstrated in Ref. [10]. The abil-
ity to generate a large-scale entanglement generation comes
from the fact that squeezed vacuum states can be entangled
with only beam-splitter coupling through the time-domain
multiplexing approach, which allows us to miniaturize optical
circuits [11] and generate unlimited resources regardless of
the coherence time of the system. In addition, a frequency-
encoded continuous variable in an optical setup is also a
promising platform [12–15], where the entangled state com-
posed of more than 60 qumodes has been observed [13].

Regarding fault-tolerant MBQC, the quantum error correc-
tion using the Gottesman-Kitaev-Preskill (GKP) qubit [16]
will be performed on the large-scale cluster state [17]. In
the quantum error correction with the GKP qubit, a stan-
dard quantum error correcting code such as the Steane’s
seven-qubit code [18] is performed on the two-dimensional
cluster state. Alternatively, topologically protected MBQC

has attracted much attention due to its high-noise threshold
in implementing fault-tolerant MBQC [19,20]. In topolog-
ically protected MBQC, a surface code [21] is performed
on a Raussendorf-Harrington-Goyal lattice, which is re-
ferred to as the topological cluster state in this paper. In
the continuous-variable system, there are many studies on
the cluster state for a surface code with continuous vari-
ables [22–26]. However, to the best of our knowledge,
the specific method for generating the large-scale topolog-
ical cluster state with continuous variables has not been
studied so far.

In this paper, we propose a method to generate the
large-scale topological cluster state, where a time-domain
multiplexing approach is combined with a divide-and-conquer
approach. Our method has the two advantages for imple-
menting large-scale quantum computation. First, our method
shows an experimentally feasible squeezing level for verifying
the entanglement of the topological cluster state, since the
required squeezing level for the topological cluster state is
almost the same level with the two-dimensional cluster state
generated by using only a time-domain method. Second, our
method provides the noise tolerance against analog errors
derived from the finite squeezing during MBQC, where the
noise propagation can be reduced thanks to the feature of the
generated topological cluster state.

The rest of the paper is organized as follows. In Sec. II,
we briefly review the background knowledge regarding the
cluster states and measurement-based computation with con-
tinuous variables. In Sec. III, we propose the method to
generate the topological cluster state. In Sec. IV, we analyze
the condition of the entanglement of the generated topolog-
ical cluster state and the error propagation in topologically
protected MBQC, showing two advantages of our method for
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FIG. 1. The generation of the one-dimensional cluster state in an optical setup by using a time-domain multiplexing approach. Each colored
circle represents a qumode, while each link between qumodes represents quantum entanglement. The color of the link denotes the sign of the
edge-weight factor for a weighted continuous-variable cluster state; i.e., the blue and yellow edges represent + and − signs, respectively. The
arrow represents the phase relationship of the unitary matrix for the beam-splitter coupling. (i) The generation of the two-mode entangled states
by using a beam-splitter coupling between a sequence of modes Ak and Bk . (ii) The generation of the one-dimensional cluster state referred to
as the extended EPR state by using a beam-splitter coupling between modes Ak and Bk−1 after the time delay for mode B. The time delay, �t ,
is implemented by an optical delay line.

implementing large-scale quantum computation. Section V is
devoted to discussion and conclusion.

II. CLUSTER STATE WITH CONTINUOUS VARIABLES

In this section, we describe the background regarding the
generation of the cluster state with continuous variables by
using a time-domain multiplexing. Specifically, we see as an
example one-dimensional cluster state [5,6] and the nullifiers
[27,28] to characterize the generated cluster state.

In a continuous-variable system, position and momentum
operators are defined as

q̂ = 1√
2

(â + â†), p̂ = 1

i
√

2
(â − â†), (1)

where â and â† are annihilation and creation operators, and
commutator relations are [â, â†] =1 and [q̂, p̂]=i with h̄ = 1.
To describe the cluster states with continuous variables in
an optical setup, we focus on the one-dimensional cluster
generation demonstrated in Refs. [5,6], which is referred to
as the extended EPR state. Figure 1 shows that a large-scale
one-dimensional cluster state generated by using the time-
domain multiplexing approach is composed of the squeezed
vacuum states. Temporally localized wave packets from two
optical parametric oscillators (OPOs) are used as qumodes for
MBQC. In Fig. 1, each colored circle and link represents a
qumode and the quantum entanglement, respectively, and the
color of the link describes the sign of the edge-weight fac-
tor for a weighted continuous-variable cluster state [5,11,28].
First, the two-mode entangled states are generated by a beam-
splitter coupling between a sequence of temporal qumodes A
and B, as shown in Fig. 1(i), where qumodes A and B have
the position and momentum squeezing, respectively. The kth
mode operators for the qumodes A and B are represented by

â(0)
A,k = (

e−r q̂(0)
A,k + ier p̂(0)

A,k

)
/
√

2,

â(0)
B,k = (

erq̂(0)
B,k + ie−r p̂(0)

B,k

)
/
√

2, (2)

where q̂(0)
A(B) and p̂(0)

A(B) are position and momentum quadra-
tures of the vacuum state with the squeezing parameters rA(B)

for the kth qumode A(B), respectively. The 50:50 beam-
splitter coupling [29] transforms the operators for qumodes

Ak and Bk as

Û †
BS

(
â(0)

A,k

â(0)
B,k

)
ÛBS = 1√

2

(
1 −1
1 1

)(
â(0)

A,k

â(0)
B,k

)

=
(

â(i)
A,k

â(i)
B,k

)
. (3)

Second, the time delay for the qumode B, �t , is implemented
with an optical delay line whose length is equal to the time
interval between adjacent qumodes. After the time delay, a
beam-splitter coupling is performed between qumodes A and
B, and transforms the operators for modes Ak and Bk−1 as

Û †
BS

(
â(i)

A,k

â(i)
B,k−1

)
ÛBS = 1√

2

(
1 −1
1 1

)(
â(i)

A,k

â(i)
B,k−1

)

= 1

2

(
â(0)

A,k − â(0)
B,k − â(0)

A,k−1 − â(0)
B,k−1

â(0)
A,k − â(0)

B,k + â(0)
A,k−1 + â(0)

B,k−1

)
=

(
â(ii)

A,k

â(ii)
B,k

)
. (4)

After the second beam-splitter coupling, we finally obtain the
one-dimensional cluster state, as shown in Fig. 1(ii).

To characterize the generated one-dimensional cluster
state, we introduce the nullifiers. The nullifier corresponds
to the stabilizer for cluster states with discrete variables in
the case of the infinite squeezing and is used to verify the
generated cluster state. The nullifiers of the qumode k for
the generated one-dimensional cluster state in the q and p
operators, δ̂

q
k and δ̂

p
k , are obtained as

δ̂
q
k = q̂(ii)

A,k + q̂(ii)
B,k − q̂(ii)

A,k+1 + q̂(ii)
B,k+1, (5)

δ̂
p
k = −p̂(ii)

A,k − p̂(ii)
B,k − p̂(ii)

A,k+1 + p̂(ii)
B,k+1, (6)

respectively [5,6]. In Eqs. (5) and (6), note that the label k for
the qumodes B in Fig. 1 is relabeled to k + 1 due to the nulli-
fier formalism (see Appendix A for details on the calculation
of nullifiers for the generated one-dimensional cluster state).
Using Eqs. (2)– (4), we obtain the relations as

δ̂
q
k = 2e−rA q̂(0)

A,k, (7)

δ̂
p
k = 2e−rB p̂(0)

B,k . (8)
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In the case of the ideal one-dimensional cluster state, i.e, the
squeezed vacuum state has an infinite squeezing, the nullifiers
for the one-dimensional cluster state |1D〉 become zero as

δ̂
q
k |1D〉 = 0, δ̂

p
k |1D〉 = 0. (9)

Thus, nullifiers for the cluster state with the infinite squeezing
correspond to the stabilizer. In the case of the finite squeez-
ing, we can verify the generation of the one-dimensional
cluster state by calculating the inseparable condition for the
variance as 〈(

δ̂
q
k

)2〉 = e−2rA
〈(

q̂(0)
A,k

)2〉
< 1

2 , (10)〈(
δ̂

p
k

)2〉 = e−2rB
〈(

p̂(0)
B,k

)2〉
< 1

2 , (11)

where 〈Ô〉 denotes the expectation value of the operator Ô,
and the variance for the vacuum states, 〈(q̂(0)

A,k )2〉 and 〈( p̂(0)
B,k )2〉,

are equal to 1/2. This condition to verify the entanglement
generation is called the van-Loock-Furusawa criterion [30].
From this criterion, the squeezing level required for the
one-dimensional cluster state is −3.0 dB squeezing of each
nullifier, where a squeezing level is equal to 10log10e−2r .

III. GENERATION OF THE TOPOLOGICAL
CLUSTER STATE

In this section, we propose a method to generate the
topological cluster state whose squeezing level required for
the entanglement is experimentally accessible to date. In our
method, the so-called divide-and-conquer approach [32,33]
is combined with the time-domain method. We note that
the purpose of using the divide-and-conquer approach in
Refs. [31,32] is to overcome a problem based on a photon
qubit in terms of the probabilistic two-qubit gate for gen-
erating the large-scale cluster state, while our purpose is to
achieve the feasible squeezing level required for verifying
the deterministic entanglement of the large-scale cluster state.
Regarding the nullifiers of the generated topological cluster
state, we analyze those in the next section.

Figure 2(a) shows the schematic diagram for the experi-
mental setup to generate the large-scale topological cluster
state using a miniaturized optical setup. The setup consists
of two components. In the first component, the small-scale
cluster states are generated without the time-domain mul-
tiplexing approach, where the small-scale cluster states are
generated from two generators. In the second component, the
large-scale topological cluster state is generated by using the
time-domain multiplexing approach [6,7,11]. The generated
topological cluster state is depicted in Fig. 2(e), where the
basal plane for the spacelike direction has N × M modes,
and the length for the timelike direction is arbitrarily large.
Figure 2(f) represents a schematic diagram of the basal plane
of the topological cluster state for the so-called distance of
the array, d = 4, for a surface code. The distance of the array
corresponds to M, assuming that M is equal to N .

We explain the first component to generate the small-scale
cluster states referred to as the hexagonal cluster state in this
paper. Figure 2(b) shows a schematic picture of generation
of the hexagonal cluster state A. Each of generators of the
hexagonal cluster state consists of six OPOs and six 50:50
beam splitters, where the transmittances of beam splitters

are obtained from the decomposition technique for the beam
splitter network [34]. The odd and even numbered qumodes
from OPOs have the momentum and position squeezing, re-
spectively. As with Eqs. (2), mode operators for the odd and
even numbered qumodes A (B) are represented as

â(0)
A(B),2n−1,k = (erq̂(0)

A(B),2n−1,k + ie−r p̂(0)
A(B),2n−1,k )/

√
2,

â(0)
A(B),2n,k = (e−r q̂(0)

A(B),2n,k + ier p̂(0)
A(B),2n,k )/

√
2, (12)

respectively, where n =1,2,3. Here we describe the transfor-
mation of annihilation and creation operators in the generator
labeled with A. The hexagonal cluster state B is gener-
ated in the same way as the hexagonal cluster state A. In
Fig. 2(b)(i), the generation of the two-mode entangled states
by a beam-splitter coupling between a sequence of modes i
and j is described. This beam-splitter coupling transforms the
operators as

Û †
BS

(
â(0)

A,i,k

â(0)
A, j,k

)
ÛBS = 1√

2

(
1 −1
1 1

)(
â(0)

A,i,k

â(0)
A, j,k

)

=
(

â(i)
A,i,k

â(i)
A, j,k

)
, (13)

where the sets of indices (i, j) are (1,6), (5,4), and (3,2). In
Fig. 2(b)(ii), the multimode entangled state are generated by
a beam-splitter coupling between a sequence of modes. After
this beam-splitter coupling, the operators become

Û †
BS

(
â(i)

A,i,k

â(i)
A, j,k

)
ÛBS = 1√

2

(
1 −1
1 1

)(
â(i)

A,i,k

â(i)
A, j,k

)

=
(

â(ii)
A,i,k

â(ii)
A, j,k

)
, (14)

where the sets of indices (i, j) are (1,4), (5,2), and (3,6). After
the Fourier transformation on modes i (i = 1, 3, 5) described
in Fig. 2(b), the hexagonal cluster state is generated, as shown
in Fig. 2(c). The operators for the hexagonal cluster state
become

Û †
F

(
â(ii)

A,i,k

â(ii)†
A,i,k

)
ÛF =

(
i 0
0 −i

)(
â(ii)

A,i,k

â(ii)†
A,i,k

)

=
(

â(iii)
A,i,k

â(iii)†
A,i,k

)
, (15)

whereas operators for qumodes i (i = 2, 4, 6) are â(ii)
A,i,k =

â(iii)
A,i,k . In the same way as the generation of the hexagonal clus-

ter state A in the first component, the hexagonal cluster state
B is obtained at the same time with the same configuration of
optical elements for the hexagonal cluster state A.

In the second component, the large-scale topological clus-
ter state is generated by a beam-splitter coupling between
qumodes A and B, and by the measurement of qumodes
belonging to the hexagonal cluster state B. In this component,
the time-domain multiplexing approach is applied to hexag-
onal cluster states A and B in Figs. 2(a)(v)–2(a)(vii). Each
of modes composed of the hexagonal cluster A is coupled
with the mode of the hexagonal cluster B after time delays
as shown in Fig. 2(d). After generating hexagonal cluster
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FIG. 2. A schematic representation of the process of our method to generate the large-scale topological cluster state. (a) Generation of the
topological cluster state from two components. (i)–(iv) The generation of the small-scale cluster states called the hexagonal cluster state in
the first component. (v)–(viii) The generation of the large-scale topological cluster state from hexagonal cluster states using a time-domain
multiplexing method, where the size of the basal plane for the topological cluster state is V = N × M. Time delays are implemented on
qumodes B2,k , B3,k , B4,k , B5,k , and B6,k by 1, N + 1, N + V + 1, N + V , and V , respectively, assuming that the kth qumode with a time delay
V × �t is coupled with the qumode in the (k + V )th hexagonal cluster state A. (b) Experimental setup for the first component, generating
the hexagonal cluster state. Each of the generators of hexagonal clusters A and B in the first component consists of six optical parametric
oscillators (OPOs) and six beam splitters. (i) The generation of two-mode entangled states. (ii) The generation of the multimode entangled
states. (iii) Fourier transformation on three qumodes. (c) The generated hexagonal cluster state A. (d) The beam-splitter coupling between the
qumodes A and B in the second component. (e) Left: The generated large-scale topological cluster state, where the size of the basal plane
for the spacelike direction is N × M, and the length for the timelike direction is arbitrarily large. The large-scale topological cluster state is
generated via the quantum erasure, i.e., the measurement of qumodes B by using the homodyne measurement and the feed-forward depending
on the measurement results after (a)(vii). Right: The unit cell of the topological cluster state. (f) Basal planes of the topological cluster state
with the distance of the array d = 4 in terms of the one horizontal slice perpendicular to the time direction. The distance of the array for a
surface code, d , corresponds to M, assuming M = N .

states A and B in Fig. 2(a)(iv), time delays are implemented
to qumodes B2,k , B3,k , B4,k , B5,k , and B6,k by 1, N + 1,
N + 1 + V , N + V , and V , respectively, whereas the qumodes
in the hexagonal cluster states A do not have a time delay, as
shown in Fig. 2(a)(v). The time delays N and V (= N × M )
are determined by the desired lattice size of the topological
cluster states, N × M. The optical delay lines 1, N , M, and
V are used to implement time delays �t , N × �t , M × �t ,
and V × �t = N × M × �t . In Fig. 2(a), unit of time delay,
�t , is omitted for brevity. After the time delays, the qumodes
of hexagonal clusters A and B are coupled by 50:50 beam
splitters in Fig. 2(a)(vi). Figure 2(d) shows a beam-splitter
coupling between qumodes in the hexagonal clusters A and
B with a same timing T . The following equation is a list for
the pairs of two modes coupled by a beam splitter in terms of

the kth hexagonal cluster B as

(A, 1, k) ⇔ (B, 1, k),

(A, 2, k + 1) ⇔ (B, 2, k),

(A, 3, k + N + 1) ⇔ (B, 3, k),

(A, 4, k + N + 1 + V ) ⇔ (B, 4, k),

(A, 5, k + N + V ) ⇔ (B, 5, k),

(A, 6, k + V ) ⇔ (B, 6, k), (16)

where k = 0, 1, 2, 3, . . . .. The first row implies that qumode 1
without a time delay in the kth hexagonal cluster A is coupled
with qumode 1 without a time delay in the kth hexagonal clus-
ter B. The second row implies that qumode 2 without a time
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FIG. 3. Introduction of generating the large-scale topological cluster state. (a) The hexagonal cluster states A and B after the first component
before a time delay. (b) The hexagonal cluster states A and B after time delays via optical delay lines. (c) Beam-splitter coupling between
qumodes A and B with the same temporal mode index. (d) Entangled state consisting of hexagonal cluster states A and B. (e) The generated
cluster state after the quantum erasure, i.e., the measurement of hexagonal cluster states B and the feed-forward operation depending on the
measurement results. (f)–(i) The process of generating the topological cluster state with the distance of the array d = 3 in terms of the one
horizontal slice perpendicular to the time direction. The qumodes and edges contained in the horizontal slice are shown.

delay in the (k + 1)th hexagonal cluster A is coupled with
qumode 2 with a time delay �t in the kth hexagonal cluster
B. For the third row, qumode 3 without a time delay in the
(k + N + 1)th hexagonal cluster A is coupled with qumode 3
with a time delay (N + 1) × �t in the kth hexagonal cluster
B. In the same way as the first, second, and third rows, other
qumodes are coupled by using the beam splitter. The beam-
splitter coupling for the first row transforms the operator as

Û †
BS2

(
â(iii)

A1,k

â(iii)
B1,k

)
ÛBS2 = 1√

2

(
1 1
1 −1

)(
â(iii)

A1,k

â(iii)
B1,k

)

=
(

â(iv)
A1,k

â(iv)
B1,k

)
, (17)

where we use the unitary matrix ÛBS2, different from ÛBS, for
the beam-splitter coupling between qumodes A and B. Other
operators are transformed in the same way as the first row
described in Eqs. (16). We here note that the label k is used
for a timing to describe the time delays. For example, after the
time delay N × �t on qumode 3 in the (k − N )th hexagonal
cluster B, the q operator for qumode 3, q̂B,3,k , becomes q̂B,3,k ,
and then qumode 3 in cluster B is coupled with qumode 3 in
the cluster A, q̂A,3,k .

After the beam-splitter coupling between qumodes A and
B, the large-scale entangled state, not the topological cluster
state, is generated in Fig. 2(a)(vii). To obtain the large-scale
topological cluster state, qumodes B need to be removed
from the large-scale entangled state by using the so-called
quantum erasure which has been demonstrated in Ref. [35].

The quantum erasure is used for the decoupling of unwanted
qumodes from a fixed large-scale cluster state by measuring
the unwanted qumodes and performing the feed-forward op-
eration depending on measurement results on the neighboring
qumodes [27]. In our case, qumodes B are measured by the
homodyne measurement in the q quadrature and the feed-
forward operation is performed on qumodes A, as shown in
Fig. 2(a)(viii). Finally, we obtain the large-scale cluster state
as depicted in Fig. 2(e).

The basal plane and the vertical axis of the topological
cluster state are used for the spacelike and timelike directions,
respectively [19]. The size of the basal plane for the spacelike
direction is N × M within finite coherence time of the light
source, and the length for the timelike direction is arbitrarily
large. We note that during the MBQC qumodes 4, 5, and 6
in the first V hexagonal clusters A will be measured in the q
quadrature, since those do not couple with any other qumodes
and do not compose the topological cluster state.

To get a more intuitive understanding of using the time-
domain multiplexing method, we describe the schematic
view of generating and entanglement between neighboring
hexagonal cluster states A in Figs. 3(a)–3(e), and the the
process of generating the topological cluster state with the
distance of the array d = 3 in Figs. 3(f)–3(i). In Figs. 3(a)–
3(e), we here focus on two hexagonal cluster states A whose
time delay is N × �t , and see the entanglement generation
between them via two hexagonal cluster states B with a
time delays. Figures 3(a) and 3(b) show four hexagonal clus-
ter states before and after time delays, respectively. Then,
beam-splitter coupling between qumodes A and B with the
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same temporal mode index is implemented, as shown in
Fig. 3(c), where the beam-splitter coupling is depicted by dot-
ted lines. The entangled state is generated with four hexagonal
cluster states after the beam-splitter coupling, as shown in
Fig. 3(d). Then, we implement the quantum erasure; namely,
the qumodes B are measured in the q quadrature and the
feed-forward operation depending on the measurement results
is implemented on qumodes A. Removing the qumodes B
through the erasing technique is needed to implement topolog-
ically protected MBQC, where qumode A is measured in the
p quadrature to implement the quantum error correction with
a surface code. After the quantum erasing, the cluster state,
which is a part of the topological cluster state, is generated, as
shown in Fig. 3(e).

In Figs. 3(f)—3(i), we can see the process of generat-
ing the topological cluster state with the distance d = 3 in
terms of the one horizontal slice at perpendicular to the
time direction. For simplicity, we describe only qumodes and
edges contained in the horizontal slice. Note that qumodes
A, which are located in outside of the upper and right sides
of the basal plane, are not needed to implement the topo-
logically protected MBQC. Thus, some of the qumodes A,
e.g., A2,νM−1, A3,νM−1, A1,M(N−1)+υ , and A2,M(N−1)+υ , are
removed by using the quantum erasing, where ν = 1, . . . .N
and υ = 0, 1, . . . .M − 1, as shown in Fig. 3(i). In addition,
some of the hexagonal cluster states B, which correspond
to qumodes located outside of the upper and right sides of
the basal plane, do not contribute to the generation of the
topological cluster state. Therefore, we would not generate
them in the first component in Fig. 2(a). These additional
operations are easy to perform in our setup.

IV. ANALYSIS

In this section, we first analyze the nullifiers of the
qumodes composed of generated hexagonal and topological
cluster states generated by the proposed method. We then
describe the verification of the generated topological cluster
state by using the nullifiers, and obtain the required squeezing
level for the verification. We finally show a robustness against
analog errors in generated states by describing the fact that
errors in the q(p) quadrature, which are derived from the
finite squeezing, do not propagate on the basis in the p(q)
quadrature between qumodes.

A. Nullifier of the topological cluster state

We first describe the nullifier of the generated hexagonal
cluster state, which obeys the transformations described in
Eqs. (13)– (15). In the following, we see the generation of
the hexagonal cluster state A. Since the odd and even num-
bered qumodes from OPOs have the momentum and position
squeezing, respectively, the initial nullifiers for the six modes
in the temporal mode index k are described as

{ p̂A,2n−1,k, q̂A,2n,k}, (18)

where n = 1,2,3. For the sake of simplicity, we omit labels
A and k in Eq. (18) as { p̂2n−1, q̂2n}. The nullifiers for the
entangled states after the first beam-splitter coupling become

{ p̂2n−1 + p̂2n+4 mod 6, q̂2n − q̂2n+1 mod 6}. (19)

In Eq. (19), for instance, the nullifier for the qumode 1
changes from p̂1 to p̂1 + p̂6 after the first beam-splitter
between qumodes 1 and 6. We then perform the second beam-
splitter coupling in Fig. 2(b)(ii), and obtain nullifiers as

{ p̂2n−1 − p̂2n+1 mod 6 + p̂2n+2 mod 6 + p̂2n+4 mod 6,

q̂2n − q̂2n+4 mod 6 − q̂2n+1 mod 6 − q̂2n+3 mod 6}. (20)

After Fourier transformations on modes 1, 3, and 5 in
Fig. 2(b)(iii), the nullifiers are transformed as

{−q̂2n−1 + q̂2n+1 mod 6 + p̂2n+2 mod 6 + p̂2n+4 mod 6,

q̂2n − q̂2n+4 mod 6 − p̂2n+1 mod 6 − p̂2n+3 mod 6}. (21)

By taking linear combinations, the nullifiers become

{ p̂ 2n−1 + q̂2n − q̂2n+4 mod 6,

p̂ 2n − q̂2n+1 mod 6 + q̂2n+5 mod 6}, (22)

which corresponds to the nullifiers for the hexagonal cluster
state described in Fig. 2(c). In the same way as hexagonal
cluster A, the nullifiers for the hexagonal cluster B are ob-
tained.

We next explain the nullifier of the generated topologi-
cal cluster state, which obeys the transformations described
in Eqs. (16) and (17). As shown in Sec. III, the topologi-
cal cluster state is generated from hexagonal clusters A and
B by using the time-domain multiplexing approach, which
leads to reduction of the requirement for an experimental
setup to generate large-scale cluster states. In the time delays
described in Fig. 2(a)(v) and Eqs. (16), for instance, the nul-
lifier for qumode B1,k changes from p̂B,1,k + q̂B,2,k − q̂B,6,k to
p̂B,1,k + q̂B,2,k+1 − q̂B,6,k+V , since we are delaying qumodes
B2,k and B6,k by �t and V × �t , respectively. After time
delays, the nullifiers for the hexagonal clusters B with label
k are described as

{ p̂B,1,k + q̂B,2,k+1 − q̂B,6,k+V ,

p̂B,2,k+1 + q̂B,1,k − q̂B,3,k+N+1,

p̂B,3,k+N+1 − q̂B,2,k+1 + q̂B,4,k+N+1+V ,

p̂B,4,k+N+1+V + q̂B,3,k+N+1 − q̂B,5,k+N+V ,

p̂B,5,k+N+V − q̂B,4,k+N+1+V + q̂B,6,k+V ,

p̂B,6,k+V − q̂B,1,k + q̂B,5,k+N+V }, (23)

whereas qumodes in the hexagonal cluster A maintain a time
series, as shown in Fig. 3(v). Then, a beam-splitter coupling
between qumodes in hexagonal clusters A and B with a same
timing T is implemented, as shown in Figs. 2(a)(vi) and 2(d).
For lack of space, we only cover nullifiers for qumodes A1,k

and A2,k in the following (see Appendix B for details on
the transformation of nullifiers). Nullifiers for qumodes A1
and A2 after a beam-splitter coupling with B1 and B2 are
described as

{ p̂A,1,k + p̂B,1,k + q̂A,2,k + q̂B,2,k − q̂A,6,k − q̂B,6,k,

p̂A,2,k + p̂B,2,k + q̂A,1,k + q̂B,1,k − q̂A,3,k − q̂B,3,k}, (24)

respectively. By taking linear combinations and replacing la-
bels, we obtain the nullifiers for qumodes A1,k and A2,k as the
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FIG. 4. Verification of the cluster sate. (a) Separability for a gen-
eral cluster state. Ci, j represents the edge-weight factor for qumodes
i and j. (b) Separability for a particular cluster state. (c) Separability
for the topological cluster state generated by using our method,
focusing on qumodes A1,k and A2,k .

equations below:

p̂A,1,k + 1
2 (q̂A,2,k + q̂B,2,k + q̂A,2,k+1 − q̂B,2,k+1 − q̂A,6,k

−q̂B,6,k − q̂A,6,k+V + q̂B,6,k+V ),

p̂A,2,k + 1
2 (q̂A,1,k + q̂B,1,k + q̂A,1,k−1 − q̂B,1,k−1

−q̂A,3,k − q̂B,3,k − q̂A,3,k+N + q̂B,3,k+N ). (25)

In a similar manner to the nullifiers for qumodes A1,k and A2,k ,
we can obtain those for other qumodes.

B. Verification of the generated topological cluster state

We discuss sufficient conditions of entanglement for the
generated cluster state by using the van Loock-Furusawa in-
separability criteria [31] to verify the generated topological
cluster state. Here we consider the K-mode cluster state for
the general case. The nullifiers for the general cluster state
are given by δ = p̂ − Cx̂, where p̂ and x̂ are column vectors
of momentum and position operators, respectively, and C is
an K × K weighted adjacency matrix [28]. The nullifiers for
neighboring modes i and j are described as

δ̂i = p̂i − Ci j q̂ j −
∑
m∈M

Cimq̂m −
∑
l∈L

Cil q̂l ,

δ̂ j = p̂ j − Cjiq̂i −
∑
n∈N

Cjnq̂n −
∑
l∈L

Cjl q̂l , (26)

where m, n, and l are labels for qumodes belonging to the
multimode cluster states M, N, and L, as shown in Fig. 4(a).
We then consider the multimode cluster states M and N in
Fig. 4(b) to deal with the multimode cluster state generated

by our method, since the multimode cluster state L in Fig. 4(a)
does not exist in our case. In this case, nullifiers for neighbor-
ing modes i and j are described as

δ̂i = p̂i − Ci j q̂ j −
∑
m∈M

Cimq̂m,

δ̂ j = p̂ j − Cjiq̂i −
∑
n∈N

Cjnq̂n, (27)

respectively. For the necessary condition of an inseparability
between qumodes i and j, if a quantum state is not separable
into two subsets Sα and Sβ , the inequality

〈�2δ̂i〉 + 〈�2δ̂ j〉 < 2h̄|Ci j | i ∈ Sα, j ∈ Sβ (28)

is satisfied, where the Sα and Sβ are any bipartition of the
set of all relevant qumodes. In Fig. 4(b), Sα is composed of
the qumode i and the multimode cluster state M, and Sβ is
composed of the qumode j and the multimode cluster states
N. For the necessary condition of an inseparability for the K-
mode cluster state, if all inequalities for the nearest-neighbor
modes i and j in the K-mode cluster state are satisfied, the
K-mode cluster state is fully entangled.

To obtain the necessary condition for our method, we see
qumodes A1,k and A2,k described in Fig. 4(c). The nullifiers
of the qumodes A1,k and A2,k are described as

δ̂A,1,k = p̂A,1,k + 1
2 (q̂A,2,k + q̂B,2,k + q̂A,2,k+1 − q̂B,2,k+1

−q̂A,6,k − q̂B,6,k − q̂A,6,k+V + q̂B,6,k+V ),

(29)

δ̂A,2,k = p̂A,2,k + 1
2 (q̂A,1,k + q̂B,1,k + q̂A,1,k−1 − q̂A,1,k−1

−q̂A,3,k + q̂B,3,k − q̂A,3,k+N + q̂B,3,k+N ),

(30)

respectively. We apply the generated cluster state with our
method to Eqs. (28)–(30) as

〈�2δ̂A,1,k〉 + 〈�2δ̂A,2,k〉 = 3h̄e−2r < h̄, (31)

where we use Eqs. (12), e.g., the variance for qumodes:

〈( p̂A(B),2n−1,k )2〉 = e−2r
〈(

p̂(0)
A(B),2n−1,k

)2〉 = e−2r

2
,

〈( q̂A(B),2n,k )2〉 = e−2r
〈(

q̂(0)
A(B),2n,k

)2〉 = e−2r

2
. (32)

[See Appendix C for details on the calculation for Eq. (31).]
Thus, we can verify the generation of the topological cluster
state, if the inequality

e−2r < 1
3 (33)

is satisfied. From the van-Loock-Furusawa criterion [31], the
required squeezing level to satisfy the above inequality is
∼-4.77dB. Consequently, our method provides almost the
same required squeezing level, −4.5 dB, to show sufficient
conditions of entanglement for the two-dimensional cluster
state which has been demonstrated in Ref. [7].

Here we mention that this benefit of the feasible squeezing
of the generated cluster state comes from the economical use
of a beam-splitter coupling. Generally, a beam-splitter cou-
pling leads to a decrease in the amplitude of the edge-weight

032614-7



FUKUI, ASAVANANT, AND FURUSAWA PHYSICAL REVIEW A 102, 032614 (2020)

FIG. 5. Error propagation in the generated topological cluster
state. (a) Error propagation from the qumode 1 to the qumode 4,
where qumodes 2 and 6 are input states, and qumodes 1 and 4 are
used for the syndrome measurement of Z and X stabilizers. (b) An
equivalent quantum circuit for MBQC on the cluster state within the
framework for a circuit-based model. F̂ denotes the Fourier trans-
formation and is implemented by the measurement of the qumode in
the p quadrature. ± denotes the sign of interaction strength of the CZ
gate, i.e., the sign of the edge-weight factor.

factor [11], without the aid of the decomposition technique
in Ref. [36]. Besides, the smaller the amplitude of the edge-
weight factor, the more the required squeezing level to show
sufficient conditions is [5,7]. In our method, we first generate
appropriate small-scale building blocks, i.e., hexagonal clus-
ter states, by using the decomposition technique. Then the
topological cluster state is constructed from building blocks
by using only one beam-splitter coupling per node of the topo-
logical cluster state. In the conventional method, on the other
hand, a topological cluster state will be generated from the
building blocks, which is two-mode entangled states, by using
more than three beam-splitter couplings per node. Hence,
our method can provide the feasible squeezing to verify the
generated cluster state.

C. Robustness against analog errors

In QC with squeezed vacuum states, the displacement
errors derived from a finite squeezing generally propagate
between qumodes by two-qubit gates, and are accumulated
due to the quantum-teleportation-based gate in MBQC. Thus,
the quantum error correction is needed to correct them for
implementing large-scale quantum computation by using an
appropriate code such as the GKP qubit [16]. Nevertheless,
the large displacement error occurs as the qubit-level error,
i.e., bit- and phase-flip errors in the code word of the GKP
qubit. Thus, the accumulation of displacement errors should
be reduced to improve the noise tolerance against analog
errors. In this subsection, we show the second advantage of
our approach, i.e., a desirable noise tolerance against analog
errors during MBQC.

In the following, let us look at the noise propagation be-
tween squeezed vacuum states, since the detailed analysis of
the quantum error correction with the GKP qubit is out of
the scope of the present paper. For simplicity, we focus on
the propagation of the displacement error from qumode 1 to
qumode 4, as shown in Fig. 5(a), assuming that qumodes 1
and 4 are measured in the p quadrature for the Z and X stabi-
lizers, respectively. Figure 5(b) shows an equivalent circuit for

MBQC on the cluster state. We here introduce the controlled-
Z (CZ) gate which corresponds to the operator exp(-igq̂jq̂k)
for qumodes j and k with the factor g corresponding to the
magnitude of the edge-weight factor. The CZ gate transforms
displacement errors in the p quadrature as

�p,j → �p,j − g�q,k, �p,k → �p,k − g�q,j, (34)

where �q,j(�p,j ) and �q,k(�p,k ) are values of the displace-
ment error for qumodes j and k in the q(p) quadrature,
respectively. Let us consider only the displacement error of
qumode 1 in the q quadrature, �q,1; the deviation errors of
qumodes except for the qumode 1 are zero. Taking into ac-
count the CZ gate, the deviation errors of qumodes 2 and 6 in
the p quadrature are described as

�p,2 = g�q,1, �p,6 = −g�q,1. (35)

After the measurement on qumodes 2 and 6 in the p quadra-
ture, displacement errors of qumodes 2 and 6 in the p
quadrature are transformed to those of qumodes 3 and 5 in
the q quadrature as

�q,3 = �q,1, �q,5 = �q,1. (36)

We note that the displacement errors are amplified by g, ac-
cording to the procedure of MBQC. Those deviation errors
of qumodes 3 and 5 eventually propagate on the qumode
4 in the p quadrature by the CZ gates. This transformation
corresponds to the Fourier transformation on the inputs A and
B in Fig. 5(b) within the framework for a circuit-based model.
After the CZ gates between qumodes 3 and 4, and 5 and 4, the
deviation errors of qumode 4 is

�q,4 = g�q,1 − g�q,1 = 0, (37)

where the edge-weight factors with respect to the qumodes
3 and 5 are +g and −g, respectively. We can see that the
analog error derived from qumode 1 is canceled out in qumode
4, and therefore the generated topological cluster state has
a robustness against displacement errors during topologi-
cally protected MBQC [36]. Since this feature is obtained
thanks to the sign of the edge-weight factors of the generated
topological cluster state, our method is practical to realize
fault-tolerant MBQC with the robustness of analog errors, in
addition to a reasonable squeezing level for the verification of
the entanglement.

In addition, we note the effect of the edge-weight factor
on the quantum error correction with the GKP qubit. To per-
form the quantum error correction with the GKP qubit, the
amplitude of edge-weight factors should be set to 1, since
the amplitude of the interaction of the two-qubit gate between
GKP qubits should be 1 in the code word of the GKP qubit.
Therefore, the strength of the entanglement of the topological
cluster state will be recovered to adjust the amplitude of the
edge-weight factor to 1 [38,39]. As a result, this entanglement
recovery increases the noise derived from a finite squeezing
of the squeezed vacuum states by the inverse of the edge-
weight factor. For example, the amplitude of the edge-weight
factor of the three-dimensional cluster state by using only the
time-domain multiplexing approach is 1/4

√
2 [40]. Thus, our

method with the amplitude of the edge-weight factor 1/2 has
an advantage for performing quantum error corrections with
the GKP qubit [41].
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V. DISCUSSION AND CONCLUSION

In this paper, we have proposed a method to generate
the topological cluster state for implementing topologically
protected MBQC with the linear optics. Our method makes
effective use of the advantage of the time-domain multiplex-
ing approach which is currently a promising way to realize
large-scale MBQC among various approaches and physical
systems, such as a superconducting and an ion-trap, due to the
ability to generate the large-scale cluster state. In our method,
the squeezing level required for verifying the generated cluster
state is an experimentally feasible value, ∼−4.77dB, which
is almost the same level with the two-dimensional cluster
state generated by using the conventional method, −4.5dB
[7]. Moreover, in the generated cluster state, analog errors
are canceled out and prevented from propagating between the
qumodes thanks to the feature of a sign of an edge-weight
factor. For the quantum error correction with the GKP qubit,
the generated cluster state has an advantage due to the smaller
amplitude of the edge-weight factor, compared to that by
using only the time-domain multiplexing approach. These
features are compatible with the analog quantum error correc-
tion [42] and high-threshold topologically protected MBQC
with the GKP qubit [43,44]. High-threshold topologically
protected MBQC on the topological cluster state generated
by our method will provide another approach to implement
large-scale MBQC with an experimentally feasible squeezing
level. In addition, we mention the resource usage for the cubic
phase gate to implement one-mode non-Gaussian operations
for universality. In our setup, the cubic phase gate can be
implemented by injecting the cubic phase state into the cluster
state, as discussed in Ref. [7]. In future work, we will inves-
tigate resource usage such as the GKP qubit and the cubic
phase state with our method. Lastly, although we apply our
approach to the topological cluster state in this paper, our
method can be applied to a variety of entangled states such as
the three-dimensional lattice for a color code [45,46], the two-
dimensional honeycomb state [47], and so on. Furthermore,
our method can be applied to several promising architectures
for a scalable quantum circuit [48–50]. Hence, we believe this
work will provide a way to generate the large-scale resource
state to implement fault-tolerant MBQC with continuous
variables.
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APPENDIX A: CALCULATION OF NULLIFIERS FOR THE
ONE-DIMENSIONAL CLUSTER STATE

In the following, we describe how to calculate the nullifiers
used for the verification. The initial nullifiers for qumodes A

and B in the temporal mode index k are defined as

{q̂A,k, p̂A,k}, (A1)

since qumodes A and B from OPOs have the position and
momentum squeezing, respectively. The nullifiers after the
first beam-splitter coupling become

{q̂A,k + q̂B,k,−p̂A,k + p̂B,k}. (A2)

Then the time delay on qumodes B transforms the nullifiers as

{q̂A,k + q̂B,k+1,−p̂A,k + p̂B,k+1}. (A3)

After the second beam-splitter coupling, we obtain nullifiers

{q̂A,k + q̂B,k − q̂A,k+1 + q̂B,k+1,

− p̂A,k − p̂B,k − p̂A,k+1 + p̂B,k+1}. (A4)

From q̂A(B),k = q̂(ii)
A(B),k and p̂A(B),k = p̂(ii)

A(B),k, the nullifiers of
mode k for the generated one-dimensional cluster state in the
q and p operators, δ̂

q
k and δ̂

p
k , are obtained as

δ̂
q
k = q̂(ii)

A,k + q̂(ii)
B,k − q̂(ii)

A,k+1 + q̂(ii)
B,k+1,

δ̂
p
k = −p̂(ii)

A,k − p̂(ii)
B,k − p̂(ii)

A,k+1 + p̂(ii)
B,k+1, (A5)

respectively, as described in Eqs. (5) and (6) in the main text.
We here give another description of nullifiers for the gener-

ated one-dimensional cluster state to characterize the color of
the link corresponding to the sign of edge-weight factors for
the generated state. Since linear combinations of the nullifiers
are also nullifiers because of the property of the nullifier, we
obtain the nullifiers for the generated one-dimensional cluster
state by taking linear combinations of them as

{q̂A,k − 1
2 (q̂A,k+1 − q̂B,k+1 + q̂A,k−1 + q̂B,k−1),

q̂B,k − 1
2 (q̂A,k+1 − q̂B,k+1 − q̂A,k−1 − q̂B,k−1),

p̂A,k + 1
2 ( p̂A,k+1 − p̂A,k−1 + p̂B,k+1 + p̂B,k−1),

p̂B,k + 1
2 ( p̂A,k+1 − p̂A,k−1 − p̂B,k+1 − p̂B,k−1)}. (A6)

Considering that nullifiers for the generated cluster state
are given by {q̂A(B),k − Ck j q̂A(B), j, p̂A(B),k + Ck j p̂A(B), j},
we obtain the weights of the generated cluster state, Ck j ,
where j is the neighboring qumodes of qumode k. The color
of the generated cluster is determined by the sign of weights,
i.e., the blue and yellow edges represent + and − signs,
respectively, as shown in Fig. 1 in the main text.

APPENDIX B: NULLIFIERS FOR THE GENERATED
TOPOLOGICAL CLUSTER STATE

We describe the transformation of nullifiers through the
beam-splitter coupling between qumodes in the hexagonal
clusters A and B, as shown in Fig. 2(vi) in the main text. After
the beam-splitter coupling, nullifiers for the hexagonal cluster
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state A become

{p̂A,1,k + p̂B,1,k + q̂A,2,k + q̂B,2,k − q̂A,6,k − q̂B,6,k,

p̂A,2,k + p̂B,2,k + q̂A,1,k + q̂B,1,k − q̂A,3,k − q̂B,3,k,

p̂A,3,k + p̂B,3,k − q̂A,2,k − q̂B,2,k + q̂A,4,k + q̂B,4,k,

p̂A,4,k + p̂B,4,k + q̂A,3,k + q̂B,3,k − q̂A,5,k − q̂B,5,k,

p̂A,5,k + p̂B,5,k − q̂A,4,k − q̂B,4,k + q̂A,6,k + q̂B,6,k,

p̂A,6,k + p̂B,6,k − q̂A,1,k − q̂B,1,k + q̂A,5,k + q̂B,5,k, }. (B1)

Nullifiers for the hexagonal cluster state B become

{ p̂A,1,k − p̂B,1,k + q̂A,2,k+1 − q̂B,2,k+1 − q̂A,6,k+V + q̂B,6,k+V ,

p̂A,2,k − p̂B,2,k + q̂A,1,k−1 − q̂B,1,k−1 − q̂A,3,k+N + q̂B,3,k+N ,

p̂A,3,k − p̂B,3,k − q̂A,2,k−N + q̂B,2,k−N + q̂A,4,k+V − q̂B,4,k+V ,

p̂A,4,k − p̂B,4,k + q̂A,3,k−V − q̂B,3,k−V − q̂A,5,k−1 + q̂B,5,k−1,

p̂A,5,k − p̂B,5,k − q̂A,4,k+1 + q̂B,4,k+1 + q̂A,6,k−N − q̂B,6,k−N ,

p̂A,6,k − p̂B,6,k − q̂A,1,k−V + q̂B,1,k−V + q̂A,5,k+N − q̂B,5,k+N }. (B2)

By taking linear combinations and replacing labels, we obtain the nullifiers for qumodes A as

δ̂A,1,k = p̂A,1,k + 1
2 (q̂A,2,k + q̂B,2,k + q̂A,2,k+1 − q̂B,2,k+1 − q̂A,6,k − q̂B,6,k − q̂A,6,k+V + q̂B,6,k+V ),

δ̂A,2,k = p̂A,2,k + 1
2 (q̂A,1,k + q̂B,1,k + q̂A,1,k−1 − q̂B,1,k−1 − q̂A,3,k − q̂B,3,k − q̂A,3,k+N + q̂B,3,k+N ),

δ̂A,3,k = p̂A,3,k + 1
2 (−q̂A,2,k − q̂B,2,k − q̂A,2,k−N + q̂B,2,k−N + q̂A,4,k + q̂B,4,k + q̂A,4,k+V − q̂B,4,k+V ),

δ̂A,4,k = p̂A,4,k + 1
2 (q̂A,3,k + q̂B,3,k + q̂A,3,k−V − q̂B,3,k−V − q̂A,5,k − q̂B,5,k − q̂A,5,k−1 + q̂B,5,k−1),

δ̂A,5,k = p̂A,5,k + 1
2 (−q̂A,4,k − q̂B,4,k − q̂A,4,k+1 + q̂B,4,k+1 + q̂A,6,k + q̂B,6,k + q̂A,6,k−N − q̂B,6,k−N ),

δ̂A,6,k = p̂A,6,k + 1
2 (−q̂A,1,k − q̂B,1,k − q̂A,1,k−V + q̂B,1,k−V + q̂A,5,k + q̂B,5,k + q̂A,5,k+N − q̂B,5,k+N ), (B3)

and obtain the nullifiers for qumodes B as

δ̂B,1,k = p̂B,1,k + 1
2 (q̂A,2,k + q̂B,2,k − q̂A,2,k+1 + q̂B,2,k+1 − q̂A,6,k − q̂B,6,k + q̂A,6,k+V − q̂B,6,k+V ),

δ̂B,2,k = p̂B,2,k + 1
2 (q̂A,1,k + q̂B,1,k − q̂A,1,k−1 + q̂B,1,k−1 − q̂A,3,k − q̂B,3,k + q̂A,3,k+N − q̂B,3,k+N ),

δ̂B,3,k = p̂B,3,k + 1
2 (−q̂A,2,k − q̂B,2,k + q̂A,2,k−N − q̂B,2,k−N + q̂A,4,k + q̂B,4,k − q̂A,4,k+V + q̂B,4,k+V ),

δ̂B,4,k = p̂B,4,k + 1
2 (q̂A,3,k + q̂B,3,k − q̂A,3,k−V + q̂B,3,k−V − q̂A,5,k − q̂B,5,k + q̂A,5,k−1 − q̂B,5,k−1),

δ̂B,5,k = p̂B,5,k + 1
2 (−q̂A,4,k − q̂B,4,k + q̂A,4,k+1 − q̂B,4,k+1 + q̂A,6,k + q̂B,6,k − q̂A,6,k−N + q̂B,6,k−N ),

δ̂B,6,k = p̂B,6,k + 1
2 (−q̂A,1,k − q̂B,1,k + q̂A,1,k−V − q̂B,1,k−V + q̂A,5,k + q̂B,5,k − q̂A,5,k+N + q̂B,5,k+N ). (B4)

APPENDIX C: CALCULATION OF THE INEQUALITY FOR THE GENERATED TOPOLOGICAL CLUSTER STATE

We explain the calculation in Eq. (31) in the main text. Using Eqs. (12)– (15) in the main text, the operators for qumodes in
the hexagonal cluster state A are represented by

â(iii)
A,1,k = iâ(ii)

A,1,k = i√
2

(â(i)
A,1,k − â(i)

A,4,k ) = i

2

(
â(0)

A,1,k − â(0)
A,6,k − â(0)

A,5,k − â(0)
A,4,k

)
,

â(iii)
A,2,k = â(ii)

A,2,k = 1√
2

(â(i)
A,5,k + â(i)

A,2,k ) = 1

2

(
â(0)

A,5,k − â(0)
A,4,k + â(0)

A,3,k + â(0)
A,2,k

)
,

â(iii)
A,3,k = iâ(ii)

A,3,k = i√
2

(â(i)
A,3,k − â(i)

A,6,k ) = i

2

(
â(0)

A,3,k − â(0)
A,2,k − â(0)

A,1,k − â(0)
A,6,k

)
,

â(iii)
A,4,k = â(ii)

A,4,k = 1√
2

(â(i)
A,1,k + â(i)

A,4,k ) = 1

2

(
â(0)

A,1,k − â(0)
A,6,k + â(0)

A,5,k + â(0)
A,4,k

)
,
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â(iii)
A,5,k = iâ(ii)

A,5,k = i√
2

(â(i)
A,5,k − â(i)

A,2,k ) = i

2

(
â(0)

A,5,k − â(0)
A,4,k − â(0)

A,3,k − â(0)
A,2,k

)
,

â(iii)
A,6,k = â(ii)

A,6,k = 1√
2

(â(i)
A,3,k + â(i)

A,6,k ) = 1

2

(
â(0)

A,3,k − â(0)
A,2,k + â(0)

A,1,k + â(0)
A,6,k

)
, (C1)

respectively. The operators for qumodes in the hexagonal cluster state B are derived in the same form as Eq. (C1). After time
delays on qumodes B, a beam-splitter coupling between qumodes A and B with a same timing T is performed, as described in
Eq. (17) in the main text. After the beam-splitter coupling, we obtain annihilation operators for A and B, âA,n,k and âB,n,k with
n = 1, 2, · · · 6, as

âA,1,k = â(iii)
A,1,k + â(iii)

B,1,k, âA,2,k = â(iii)
A,2,k + â(iii)

B,2,k−1, âA,3,k = â(iii)
A,3,k + â(iii)

B,3,k−N−1,

âA,4,k = â(iii)
A,4,k + â(iii)

B,4,k−N−V −1, âA,5,k = â(iii)
A,5,k + â(iii)

B,5,k−N−V , âA,6,k = â(iii)
A,6,k + â(iii)

B,6,k−V , (C2)

and

âB,1,k = â(iii)
A,1,k − â(iii)

B,1,k, âB,2,k = â(iii)
A,2,k − â(iii)

B,2,k−1, âB,3,k = â(iii)
A,3,k − â(iii)

B,3,k−N−1,

âB,4,k = â(iii)
A,4,k − â(iii)

B,4,k−N−V −1, âB,5,k = â(iii)
A,5,k − â(iii)

B,5,k−N−V , âB,6,k = â(iii)
A,6,k − â(iii)

B,6,k−V , (C3)

respectively. Using Eqs. (C2), (C3), and (12) in the main text, the nullifiers for qumodes A and B are obtained as

δ̂A,1,k = e−r

√
2

( − q̂(0)
A,2,k − q̂(0)

B,2,k − q̂(0)
A,4,k − q̂(0)

B,4,k − q̂(0)
A,6,k − q̂(0)

B,6,k

)
,

δ̂A,2,k = e−r

√
2

(
p̂(0)

A,1,k + p̂(0)
B,1,k−1 + p̂(0)

A,3,k + p̂(0)
B,3,k−1 + p̂(0)

A,5,k + p̂(0)
B,5,k−1

)
,

δ̂A,3,k = e−r

√
2

( − q̂(0)
A,2,k − q̂(0)

B,2,k−N−1 + q̂(0)
A,4,k + q̂(0)

B,4,k−N−1 − q̂(0)
A,6,k − q̂(0)

B,6,k−N−1

)
,

δ̂A,4,k = e−r

√
2

(
p̂(0)

A,1,k + p̂(0)
B,1,k−N−V −1 + p̂(0)

A,3,k + p̂(0)
B,3,k−N−V −1 + p̂(0)

A,5,k + p̂(0)
B,5,k−N−V −1

)
,

δ̂A,5,k = e−r

√
2

( − q̂(0)
A,2,k − q̂(0)

B,2,k−N−V − q̂(0)
A,4,k − q̂(0)

B,4,k−N−V + q̂(0)
A,6,k + q̂(0)

B,6,k−N−V

)
,

δ̂A,6,k = e−r

√
2

(
p̂(0)

A,1,k + p̂(0)
B,1,k−V + p̂(0)

A,3,k + p̂(0)
B,3,k−V − p̂(0)

A,5,k − p̂(0)
B,5,k−V

)
, (C4)

and

δ̂B,1,k = e−r

√
2

( − q̂(0)
A,2,k + q̂(0)

B,2,k − q̂(0)
A,4,k + q̂(0)

B,4,k − q̂(0)
A,6,k + q̂(0)

B,6,k

)
,

δ̂B,2,k = e−r

√
2

(
p̂(0)

A,1,k − p̂(0)
B,1,k−1 + p̂(0)

A,3,k − p̂(0)
B,3,k−1 + p̂(0)

A,5,k − p̂(0)
B,5,k−1

)
,

δ̂B,3,k = e−r

√
2

(
q̂(0)

−A,2,k + q̂(0)
B,2,k−N−1 + q̂(0)

A,4,k − q̂(0)
B,4,k−N−1 − q̂(0)

A,6,k + q̂(0)
B,6,k−N−1

)
,

δ̂B,4,k = e−r

√
2

(
p̂(0)

A,1,k − p̂(0)
B,1,kv

+ p̂(0)
A,3,k − p̂(0)

B,3,kv
+ p̂(0)

A,5,k − p̂(0)
B,5,k−N−V −1

)
,

δ̂B,5,k = e−r

√
2

( − q̂(0)
A,2,k + q̂(0)

B,2,k−N−V − q̂(0)
A,4,k + q̂(0)

B,4,k−N−V + q̂(0)
A,6,k − q̂(0)

B,6,k−N−V

)
,

δ̂B,6,k = e−r

√
2

(
p̂(0)

A,1,k − p̂(0)
B,1,k−V + p̂(0)

A,3,k − p̂(0)
B,3,k−V − p̂(0)

A,5,k + p̂(0)
B,5,k−V

)
, (C5)

respectively. Using 〈(q̂(0)
A(B),n,k )2〉 = 〈( p̂(0)

A(B),n,k )2〉 = 1/2, we obtain variances for nullifiers, 〈�2δ̂A(B),n,k〉, as

〈�2δ̂A(B),n,k〉 = 3
2 e−2r, (C6)

and get the inequality

〈�2δ̂A,1,k〉 + 〈�2δ̂A,2,k〉 = e−2r < 1
3 , (C7)

as described in Eq. (33) in the main text. In the same way as the inequality for qumodes A1,k and A2,k , we can derive the
inequality for other qumodes.
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