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In our previous research, simulation showed that a quantum locking scheme with homodyne detection in 
sub-cavities is effective in surpassing the quantum noise limit for Deci-hertz Interferometer Gravitational 
Wave Observatory (DECIGO) in a limited frequency range. This time we have simulated an optical spring 
effect in the sub-cavities of the quantum locking scheme. We found that the optimized total quantum 
noise is reduced in a broader frequency band, compared to the case without the optical spring effect 
significantly improving the sensitivity of DECIGO to the primordial gravitational waves.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

In the latest observing run, Advanced LIGO [1] and Advanced 
Virgo [2] had been detecting gravitational-wave signals from black 
hole/neutron star binaries at an average frequency of once or twice 
a week [3]. Recently, KAGRA [4] also began observation and will 
join the LIGO and Virgo network shortly. However, gravitational-
wave signals at low frequencies, especially below 10 Hz, are dif-
ficult to detect by the ground-based detectors because of ground 
vibration and thermal noise in the mirror suspensions. Thus it is 
expected that space-borne detectors are superior at low frequen-
cies, as they are free from ground vibration and pendulum-like 
suspension.

Primordial gravitational waves, which are expected to be pro-
duced during the inflation period, are among the most important 
targets of low-frequency gravitational wave observation [5]. Unfor-
tunately, they have never been detected. To detect the primordial 
gravitational waves in addition to other important science goals, 
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a Japanese space mission, Deci-hertz Interferometer Gravitational 
Wave Observatory (DECIGO), has been planned [6,7].

Quantum noise is one of the fundamental noise sources that 
limit the sensitivity of laser interferometric gravitational wave de-
tectors [8]. In ground-based detectors, the quantum noise can be 
suppressed by using squeezed states of light [9–11], cavity detun-
ing [12,13] and employing heavy mirrors. However, in the case 
of DECIGO, these options are not available to us. Using squeezed 
light or detuning cavity in 1000-km-long arms results in too large 
a diffraction loss, and the mirror mass is limited by the satellite 
facility. Thus, we considered the quantum locking scheme [14,15]
to reduce quantum noise in DECIGO.

In our earlier work on the quantum locking scheme [16], 
we implemented, in simulation, the two short sub-cavities which 
share one mirror with the main cavity (Fig. 1). We found that 
the quantum noise can be optimized by taking an appropriate 
combination of output signals from the main cavity and the two 
sub-cavities. We also found that if we utilize the ponderomotive 
squeezing in the sub-cavities by sensing their length signals at an 
appropriate homodyne angle, we can reduce the quantum noise 
and even beat the standard quantum limit around 0.1 Hz. This 
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Fig. 1. Configuration of the quantum locking scheme. M1 and M2 mirrors constitute the main cavity. Laser (LM) emits the light into the main cavity, and the reflected light 
is detected by a photodetector (PDM). The main cavity is controlled on resonance (marked by a “star” in the figure). Two sub-cavities consist of shared mirrors (M1, M2) 
and additional mirrors (S1, S2). They have their own lasers (LS1, LS2) and photodetectors (PDS1, PDS2). The sub-cavities are detuned from resonance (marked by “star”s in the 
figure).
frequency band is promising for detecting primordial gravitational 
waves.

Although the quantum locking scheme was found to be effec-
tive in reducing the quantum noise, it was found that we can 
reduce the quantum noise only in a relatively narrow frequency 
band. If we can reduce the quantum noise in a broader frequency 
band, the sensitivity of DECIGO to the primordial gravitational 
waves can be improved.

To reduce the quantum noise in a broader band, we consider 
detuning the sub-cavities from resonance to employ the opti-
cal spring effect [17]. We expect that the larger optomechanical 
coupling and an additional adjustable parameter (detuning angle) 
provided by the optical spring could improve the quantum noise 
and could even broaden the frequency bandwidth of the quantum 
noise. To specify the optical spring effect in the quantum locking, 
it is important to numerically simulate the quantum noise in the 
quantum locking.

In this paper, first, we explain, in detail, a new method for re-
ducing the quantum noise by using the quantum locking scheme 
with an added optical spring. Then we show, through simulation, 
how the quantum noise is reduced, and how the signal-to-noise 
ratio of the primordial gravitational wave for the quantum noise is 
improved.

2. Theory

As shown in Fig. 1, in the quantum locking scheme, we use 
sub-cavities which share mirrors with the main cavity. Let us name 
these sub-cavity sub-cavity1 and sub-cavity2.
2

In the quantum locking scheme, we obtain three output sig-
nals from the main cavity and sub-cavities. V 0 is the output signal 
from the main cavity, V 1 is that from sub-cavity1, and V 2 is that 
from sub-cavity2. Using these three output signals, we estimate 
the optimized output of the quantum locking scheme: V . If sub-
cavity1 and sub-cavity2 have the same configuration as each other, 
the appropriate combination of these three output signals can be 
obtained by

V = V 0 + χ (V 1 + V 2) , (1)

where χ is tunable function. Note that we have considered the 
above expression in the Laplace domain. We can arbitrarily set χ
to optimize the quantum noise [16].

We can beat the standard quantum limit if we use ponderomo-
tive squeezing and homodyne detection in the sub-cavities.

In this paper, we use phase and amplitude quadratures to de-
scribe quantum fluctuations [18]. We consider annihilation and 
creation operators of each cavity mode, ai and a†

i , which satisfy 

[ai, a
†
i ] = 1. We define qi = ai+a†

i
2 and pi = ai−a†

i
2i . qi is the ampli-

tude quadrature and pi is the phase quadrature. Here, a0 is for the 
main cavity, a1 is for the sub-cavity1 and a2 is for the sub-cavity2. 
qi,in and pi,in are amplitude and phase quadratures, respectively, 
of the incoming vacuum field of each cavity. qi,out and pi,out are 
those of the outgoing field.

Fig. 2 shows the phasor diagram at the detection port of the 
sub-cavity1. When the laser light enters the sub-cavity, the quan-
tum fluctuations of the amplitude quadrature (q1,in) and the phase 
quadrature (p1,in) also enter the sub-cavity1. The amplitude quan-
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Fig. 2. Phasor diagram at the detection port of the sub-cavity. “carrier” is the laser 
light of sub-cavity 1. “q1,in” and “p1,in” are the amplitude and phase quadratures 
of the quantum fluctuations respectively. The amplitude quadrature combined with 
carrier shakes the mirror. “PS1” and “PM1” are the phase fluctuation due to the 
mirror displacement fluctuations, and their amplitudes depend on the optical spring 
effect. “η1” is the homodyne angle. In homodyne detection, we detect the signals 
that are projected on the dotted line.

tum fluctuation couples with the carrier light and shakes the cavity 
mirrors. Then, the mirror displacement fluctuation causes phase 
fluctuations in the reflected light (PS1, PM1). If we detect the light 
along an appropriate axis (dotted line shown in Fig. 2) by homo-
dyne detection, we can cancel the phase fluctuation caused by the 
S1 mirror displacement fluctuation (PS1) and the amplitude quan-
tum fluctuation (q1,in) at a certain frequency. It means that only 
the phase fluctuation caused by the M1 mirror displacement fluc-
tuation (PM1) is detected at the photodetector. Thus, if we feed 
the signals back to the M1 mirror, we can eliminate the radiation 
pressure noise of the M1 mirror at a certain frequency.

In this paper, additionally, we detune the sub-cavity from reso-
nance and introduce an optical spring. The optical spring effect is 
caused in the detuned cavity. Generally, in a cavity, the radiation 
force acts on the cavity mirrors from the inside. To make the cavity 
stable, a constant external force that balances the radiation force is 
applied from the outside by the control system. In a detuned cav-
ity, the radiation force depends on the length of the cavity. For 
example, in the cavity with a mirror placed initially on the de-
clining slope (“A” in Fig. 3), if the length of the cavity decreases 
([short] in Fig. 3), the mirror is pushed back to the initial posi-
tion by the increased radiation force, while if the length increases 
([long] in Fig. 3), it is pulled back by the decreased radiation force. 
This is the optical spring.

3. Simulation

3.1. Simulation model

In order to calculate the quantum noise in the quantum locking 
scheme with the optical spring, we use a block diagram, shown in 
Fig. 4 (see also [19]). This block diagram is composed of three areas 
(gray areas in Fig. 4) representing the main cavity and the sub-
cavities. Each cavity has two input ports, the amplitude quadrature, 
qi,in (i = 0, 1, 2; 0 is for the main cavity, 1 and 2 are for the sub-
cavities), and the phase quadrature, pi,in , and one output port (V i ). 
Note that, in this block diagram, we assume that the reflectivity of 
the end mirror is 1 for each cavity.

In the main cavity, the amplitude quadrature (q0,in) and the 
phase quadrature (p0,in) are divided into transmission and reflec-
tion according to the input mirror’s amplitude transmissivity, t0, 
and its amplitude reflectivity, r0, respectively. Here, we assume 
that the mirrors have no optical loss: t2 + r2 = 1. After that, the 
i i

3

Fig. 3. Mechanism of the optical spring. The upper graph shows the internal power 
of the cavity vs. mirror displacement. When displacement is 0, the cavity is tuned 
exactly to resonance. When we detune the cavity from resonance (“A” in the figure), 
the radiation force and the external force should be balanced. As a result, if the 
mirror moves and the cavity length decreases ([short] in the figure) or increases 
([long] in the figure), the radiation force increases or decreases, respectively, and 
the mirror is pushed or pulled back.

amount of transmitted light depends on the cavity pole in the cav-
ity: c

2L0(s+γ0)
, where s is the Laplace complex variable and γi is the 

cavity pole.

γi = πc

2LiFi
(2)

Fi = π
√

ri

1 − ri
. (3)

Here, c is the speed of light and Li is the cavity length. Within 
the cavity, the amplitude quadrature and the phase quadrature are 
represented by q0 and p0. The amplitude quadrature couples with 
carrier light and becomes a force that pushes the mirror by 2h̄ω0 A0

c , 
where h̄ is the reduced Planck constant, ωi is the angular fre-
quency of the light: ωi = 2πc

λi
, and Ai is the amplitude of the light: 

Ai = 2Ii
ωi h̄

, where Ii is the intensity of the light. The force causes the 
mirror to displace by 1

m0s2 , where mi is the mirror mass. The mir-

ror displacement is multiplied by 2A0k0 and added to the phase 
fluctuation, where ki is the wavenumber of laser light: ki = ωi

c . 
The quantum fluctuations go out the main cavity; t0, and they are 
represented by q0,out and p0,out. Finally, we detect the signal as 
V 0. x is the input port of gravitational wave signals as mirror dis-
placement.

In the sub-cavity1, the transmitted fluctuations are redis-
tributed into the amplitude quadrature and the phase quadratures: 

c(s+γ1)

2L1{(s+γ1)2+�2
1} or ±c�1

2L1{(s+γ1)2+�2
1} .

�i = δφic
. (4)
2Li
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Fig. 4. Block diagram for calculating the quantum noise of the quantum locking with the optical spring. The central part is the main cavity, and the upper and lower parts 
are the sub-cavities. qi,in and pi,in are divided into reflection and transmission by ti and ri . In the main cavity the transmission depends on the cavity pole: c

2L0(s+γ0)
. qi

and pi are amplitude and phase quadratures of the inter-cavity field. In the sub-cavities, the transmission depends on the cavity pole and optical spring: c(s+γ1)

2L1{(s+γ1)2+�2
1} or 

±c�1
2L1{(s+γ1)2+�2

1} . Multiplied by 2h̄ω0 AM
c , the amplitude quadrature combines with the carrier and becomes the force pushing the mirror. Multiplied by 1

ms2 , the force causes 
the displacement of the mirror. Further multiplied 2Aiki , the mirror displacement is applied to the phase fluctuation. qi,out and pi,out are amplitude and phase quadratures 
of the outgoing field. The homodyne detector projects the signal into sinηi and cosηi . Finally, we detect V i . x is the input port of gravitational wave signals indicated as the 
mirror displacement.
Here, δφi is the detuning angle. After that, the new amplitude 
quadrature shakes the mirrors and is added to the phase quadra-
ture in the same manner as the main cavity. Note that since the 
main cavity and the sub-cavity share their mirrors, they also share 
block: 1

m0s2 . V 1 is obtained through homodyne detection, which is 
represented by sinη1 and cosη1. The block diagram of the sub-
cavity2 is the same as that of the sub-cavity1.

Using this block diagram, we calculate the optimized quantum 
noise. First, we obtain each photodetector’s signals as follows:

V 0 = x + Aq0,in + iBp0,in + Cq1,in + iDp1,in + Eq2,in

+ i Fp2,in (5)

V 1 = Gq0,in + iHp0,in + Iq1,in + i Jp1,in (6)

V 2 = Kq0,in + iLp0,in + Mq2,in + iNp2,in. (7)

Here, A through N are the coefficients for each independent noise 
source.
4

The combination of the detector outputs V 0, V 1 and V 2 ex-
pressed as Eq. (1), contains the gravitational wave signal. The noise 
level of V can be evaluated by taking a quadrature sum of the 
contributions from each independent noise source. As described in 
reference [16] in detail, the power spectral density of the detector 
output, Sx , is minimized when

χ = − 2(AG∗ + B H∗ + C I∗ + D J∗)(|2G|2 + |2H|2 + 2|I|2 + 2| J |2) . (8)

The minimized power spectral density can be written as

Sx =
{
− 4|AG∗ + B H∗ + C I∗ + D J∗|2(|2G|2 + |2H|2 + 2|I|2 + 2| J |2)

+
(
|A|2 + |B|2 + |C |2 + |D|2 + |E|2 + |F |2

)}
. (9)
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Table 1
Parameters for the block diagram.

Main cavity Laser power I0 100 W
Finesse F0 10
Cavity length L0 1000 km
Wavelength λ0 515 nm
Mirror mass m0 100 kg

Sub cavity Laser power I1, I2 *
Finesse F1,F2 *
Cavity length L1, L2 1 m
Wavelength λ1, λ2 515 nm
Mirror mass m1,m2 100 kg
Homodyne angle η1, η2 Free
Detuning angle δφ1, δφ2 Free

Table 2
Parameters used to estimate the SNR.

Noise power spectral densities P1, P2 Calculated in sec. 3.1

Hubble parameter H0 70 km · sec−1 · Mpc−1

Time for correlation T 3 years
Energy density �GW 10−16

Frequency f 0.1 to 1 Hz
correlation function � 1

3.2. Simulation conditions

In this subsection, we state the parameters used to estimate the 
noise power spectral density and the signal-to-noise ratio (SNR) for 
the primordial gravitational waves in this paper.

Table 1 shows the parameters for the block diagram used to 
estimate the noise power spectral density. In our simulation, we 
consider the case where sub-cavity2 has the same configuration as 
sub-cavity1.

The homodyne and detuning angles are free parameters. In 
Sec. 3.3, we fix the finesse at 10 and the laser power at 100 W 
in the sub-cavities. After that, in Sec. 3.4, we keep the finesse and 
laser power of the sub-cavities as free parameters. Note that we 
limit the laser power to 100 W keeping practical constrains in 
mind.

We calculate the signal-to-noise ratio (SNR) [20] for the primor-
dial gravitational waves and optimize the homodyne and detuning 
angles. To calculate the SNR, we use the following equation (10);

S N R = 3H2
0

10π2

√
T

⎡
⎣

1∫
0.1

df
2�( f )2�2

GW ( f )

f 6 P1( f )P2( f )

⎤
⎦

1/2

. (10)

Here, P1 and P2 are the noise power spectrum densities calculated 
in Sec. 3.1 with Table 1. H0 is the Hubble parameter, T is the cor-
relation time and �GW is the energy density ratio of the primordial 
gravitational wave to the closure density [21,22]. We integrate the 
quantity in the frequency space from 0.1 Hz to 1 Hz, which is the 
target frequency band of DECIGO. � is the correlation function, in 
the case of DECIGO, � = 1. Table 2 shows the actual numbers used 
in the calculation.

3.3. Dependence of signal-to-noise ratio on homodyne angle and 
detuning angle

Fig. 5 shows the simulation result of the dependence of SNR on 
the homodyne and detuning angles when we fix the finesse to 10 
and the laser power to 100 W in the sub-cavities.

We show the optimal homodyne angle and the detuning angle 
in Fig. 5. When the sub-cavities are off resonance, the best SNR is 
156.7. On the other hand, when the sub-cavities are on resonance 
(which means δφi is 0), the best SNR is 42.2. The off-resonant sub-
5

Fig. 5. Dependence of SNR on the homodyne and detuning angles. The best SNR is 
156.7 when the detuning angle is 0.04 rad and the homodyne angle is 1.477 rad. 
The rugged features on the ridge in the curved surface are caused by the imperfect 
resolution of the detuning angle and the homodyne angle in the calculation.

Fig. 6. Sensitivity curves at three points on the ridge in the curved surface in Fig. 5. 
The blue curve provides the best SNR with an optimized detuning angle (δφ1 =
0.04 rad). The cyan curve is for a smaller detuning angle (δφ1 = 0.02 rad), and the 
magenta curve is for a larger detuning angle (δφ1 = 0.06 rad). (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

cavities with an optical spring provide an improvement which is 
factor of 3.7 better than the resonant sub-cavities in SNR.

Fig. 6 shows the sensitivity curves at three points on the ridge 
in the curved surface in Fig. 5. For detuning angles smaller than 
the best-SNR detuning angle, the quantum noise is reduced in a 
narrower frequency band. On the other hand, for larger detuning 
angles the dip frequency is moved to a higher frequency.

3.4. Dependence of signal-to-noise ratio on finesse and laser power

In this subsection, we show the simulation results under the 
condition that the finesse and the laser power of the sub-cavities 
are also kept as free parameters. For each pair of finesse and laser 
power, F1 and I1, we optimize the homodyne angle (η1) and the 
detuning angle (δφ1) to make SNR the highest. Here, we define 
this highest SNR as SNR(F , I). Fig. 7 shows the dependence of 
SNR(F , I) on F1 and I1. And the best SNR(F , I) is 214, when 
finesse is 7.4 and laser power is 100 W. We found the optimal fi-
nesse is not the highest available to the simulations in Fig. 7. This 
is because if the finesse is higher than optimal, the dip in the sen-
sitivity curve becomes narrower.

In order to compare this result with the resonant sub-cavities 
case, we performed the same calculation for the resonant case. It 
was found that the best SNR(F , I) is 84.8, when finesse is 171.3 
and laser power is 100 W. Note that we put “for example” because 



R. Yamada, Y. Enomoto, I. Watanabe et al. Physics Letters A 402 (2021) 127365

Fig. 7. Dependence of SNR(F , I) on the finesse and laser power of sub-cavities. The best SNR is 214, when finesse is 7.4 and laser power is 100 W. A blank indicates that the 
SNR is not calculated as it is not expected to be high.
Fig. 8. Comparison of total noise curve with off-resonant sub-cavities and resonant 
sub-cavities. The black dotted line shows the total noise curve without sub-cavities 
as reference.

in the resonant case, the SNR is the same if the product of finesse 
and laser power is the same.

Fig. 8 shows the total noise curves for the highest SNR(F , I) 
with the resonant sub-cavities and off-resonant sub-cavities.

The total noise with the off-resonant sub-cavities (blue dot line 
in Fig. 8) is reduced in a broader frequency band than with the 
resonant sub-cavities (blue line in Fig. 8). The dip in the total noise 
curve with the off-resonant sub-cavities is deeper than that with 
the resonant sub-cavities. Since the primordial gravitational wave 
signal is larger at lower frequencies, the SNR depends most on the 
noise level at lower frequencies. This is why the optimized noise 
curve has a dip around 0.1 Hz, which is the lowest frequency of 
the integration (Eq. (10)).

4. Discussion

In this section, we discuss the reason for the improvement in 
SNR.

Fig. 9 shows the noise budget with the resonant sub-cavities 
(9a) and off-resonant sub-cavities (9b). Around the dip frequency, 
in the resonant sub-cavities case, q0,in_caused noise and q1,in
(q2,in)_caused noise are close to limiting the total quantum-noise 
sensitivity, while p1,in (p2,in)_caused noise is negligible. When we 
detune the sub-cavities from resonance, q0,in_caused noise and 
q1,in (q2,in)_caused noise decrease at the expense of an increase in 
p1,in (p2,in)_caused noise. As a result, the total quantum noise with 
the off-resonant sub-cavities is reduced around the dip frequency. 
6

This improvement can be regarded as an optimizing shuffle of sev-
eral quantum noises thanks to the additional optomechanical free 
parameter (detuning angle).

Incidentally, p0,in_caused noise is not affected by the optical 
spring because this noise corresponds to the shot noise of the main 
cavity. This noise limits the depth of the dip in both cases.

We can also notice that for the resonant case, the dip frequency 
of p1,in (p2,in)_caused noise is different from that of q0,in_caused 
noise and q1,in (q2,in)_caused noise. On the other hand, for the 
off-resonant case, the dip frequencies of p1,in (p2,in)_caused noise, 
q0,in_caused noise, and q1,in (q2,in)_caused noise are all the same. 
This is the most important reason for the improvement in sensi-
tivity.

The dip frequencies of these three quantum noises are deter-
mined by the homodyne and detuning angles when we fix the 
finesse and the laser power of sub-cavities. Fig. 10 shows the de-
pendence of the dip frequencies of the three quantum noises on 
the homodyne and detuning angles for the off-resonant case (10a 
and 10b) and for the resonant case (10c) with the parameters 
(F1, I1) = (7.4, 100), which provides the best SNR(F , I). In (10a) 
and (10b), these three dip frequencies cross at one frequency near 
0.1 Hz for the particular pair of the homodyne angle and detuning 
angle. However, in (10c), these three dip frequencies do not cross 
at one frequency. This difference can be attributed to the fact that 
the off-resonant case has the additional free parameter (detuning 
angle) to tune the dip frequencies of the three quantum noises.

5. Conclusion

Encouraged by the result of our previous work on a quan-
tum locking scheme for DECIGO, in this paper, we explored the 
use of an optical spring in the sub-cavities of the quantum lock-
ing system, with expectation that enhanced optomechanical cou-
pled would lead to improved sensitivity. We performed simulations 
with detuning included, and found that by optimizing detuning 
angle of sub-cavities, the total quantum noise is decreased in a 
broader frequency band compared with the resonant case. We also 
found that this improvement can be attributed to the shuffle of 
the three quantum noises as well as the adjustment of the dip fre-
quencies of the three quantum noises thanks to the additional free 
parameter (detuning angle). We believe that this quantum lock-
ing scheme with an optical spring provides a promising technology 
that would enhance the reach of DECIGO.
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Fig. 9. Sensitivity curve for the best SNR(F , I) for the case with the resonant sub-cavities (9a), and for the case with off-resonant sub-cavities (9b). The noise budgets for 
each quantum noise are also plotted.

Fig. 10. Dependence of the dip frequencies of the three quantum noises on the homodyne angle and detuning angle with (F1, I1) = (7.4, 100). The off-resonant case is 
shown in (10a) and (10b). In (10a), the detuning angle is fixed at 1.216 rad, and in (10b), the homodyne angle is fixed at 0.216 rad. The resonant case is shown in (10c), 
where the detuning angle is zero.
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