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Experimental demonstration of coherent feedback
control on optical field squeezing

Sanae Iida, Mitsuyoshi Yukawa, Hidehiro Yonezawa, Naoki Yamamoto, and Akira Furusawa

Abstract—Coherent feedback is a non-measurement based,
hence a back-action free, method of control for quantum sys-
tems. A typical application of this control scheme is squeezing
enhancement, a purely non-classical effect in quantum optics. In
this paper we report its first experimental demonstration that
well agrees with the theory taking into account time delays and
losses in the coherent feedback loop. The results clarify both
the benefit and the limitation of coherent feedback control in a
practical situation.

I. I NTRODUCTION

Feedback control theory has recently been further extended
to cover even quantum systems such as a single atom.
The methodologies are broadly divided into two categories:
measurement-based feedback control andnon-measurement-
based one called thecoherent feedback control. Below we
briefly describe their major difference and particularly a spe-
cific feature of the latter control strategy.

Quantum (continuous-time) measurement produces useful
information (which is of course a continuous-time signal)
that can be fed back to the system of interest, though at the
same time it introduces unavoidableback-action noise into
the system [3], [5]. A number of investigation of this trade-
off have discovered several situations where the measurement-
based feedback control has clear benefits [27], for instance
an application to quantum error correction [1]. On the other
hand, the coherent feedback (CF) control [12], [13], [17],
[26], [28], [29] takes a totally different approach. The general
structure of the CF control is shown in Fig. 1 (a); the
system outputs a “quantum signal”, then the controller, which
is also a quantum system, coherently modulates the output
and feeds it back to control the system. In this scheme
any measurement is not performed, implying that no excess
measurement back-action noise is introduced into the system.
Because of this feature the CF control is suitable for dealing
with problems ofnoise reduction, which is the central topic
in the control theory. Actually we find that the very successful
noise-reducing controllers, theH∞ and the Linear Quadratic
Gaussian controllers, have natural CF control analogues [14],
[18], [19], [23], [29].
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Fig. 1. (a) General structure of the CF control. The arrows correspond
to unidirectional flows of “quantum signals” such as opticallaser fields.
(b) Optical system structure of the CF control for squeezingenhancement,
corresponding to Fig. 3.

Here we mention about asqueezed state [25]; this is a
purely non-classical state where the fundamental quantum
noise is reduced below the quantum noise limit in one of
the quadrature observables such as the positionq̂ and the
momentump̂ (a more detailed description will be given in
Section II). Therefore, a situation in which noise reduction
via the CF control shows the best efficiency may appear in
problems of generating squeezed states. Actually Yanagisawa
[29] and Gough [11] theoretically showed that this idea works
in the case of quantum optics. Figure 1 (b) illustrates the
CF loop structure they studied. The quantum system, which
now corresponds to anoptical parametric oscillator (OPO),
has an ability of noise reduction; that is, it transforms an
input coherent state into an output squeezed state. It was then
shown that the performance of squeezing can be enhanced by
constructing an appropriate CF controller, which in this case
is given by abeam splitter with tunable transmissivity.

The purpose of this paper is to report the first experimental
demonstration of the above-mentioned CF control on optical
field squeezing, which well agrees with the theory that care-
fully takes into account the effects of the actual laboratory
setup, particularly time delays and losses in the feedback loop.
The results are significant in the sense that, both theoretically
and experimentally, they clarify the situation where the CF
control is really effective and the limitation on how much it
can improve the system performance practically. Note that in
[11], [29] a realistic closed loop model was not considered,
hence such benefit and limitation are first clarified in this
paper. Another important remark is that, while Mabuchi has
experimentally demonstrated classical noise reduction with the
CF control [20], in our case we deal with purely non-classical
noise reduction that beats the quantum noise limit, which is
crucial in quantum information processing. In this sense, this
paper provides the first experimental demonstration of realistic
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applicability of the CF control to non-classical regime.

II. PRELIMINARIES

In this section we provide some notions of quantum me-
chanics and the dynamics of an OPO. For more details see
[2], [7], [8], [9], [10], [16].

A. Observables, states, and statistics in quantum optics

In quantum mechanics, unlike the classical case, physical
quantities must take different values probabilistically when
measuring them. The corresponding statistics is describedin
terms of astate, which is represented by a unit vector|ψ〉. In
general, when measuring a physical quantity represented bya
self-adjoint operatorX̂ = X̂†, the mean and variance of the
measurement results are respectively given by

〈X̂〉 := 〈ψ|X̂ |ψ〉, 〈∆X̂2〉 := 〈ψ|X̂2|ψ〉 − 〈ψ|X̂ |ψ〉2,

where〈ψ| is the adjoint to|ψ〉. That is, a state corresponds to
a probability distribution. For these statistical values to take
real numbers,X̂ must be self-adjoint; actually in quantum
mechanics any physical quantity is represented by a self-
adjoint operator and is called anobservable.

A single-mode quantum optical field is described with
a field operatorâ and its adjoint â†, which respectively
correspond to a complex amplitude and its conjugate of a
classical optical field. These operators satisfy thecanonical
commutation relation (CCR) [â, â†] = ââ† − â†â = 1. These
field operators are not self-adjoint, i.e., not observables, hence
let us define

x̂+ := â+ â†, x̂− := −i(â− â†).

Analogous to the classical case, these observables are called
the amplitude and phase quadratures. The CCR for these
observables is[x̂+, x̂−] = 2i, and because of this equality,
for any state the variances satisfy theHeisenberg’s uncertainty
relation:

〈∆x̂2+〉〈∆x̂2−〉 ≥ 1. (1)

This means that the amplitude and phase quadratures cannot
be determined simultaneously. In other words, there is funda-
mental uncertainty with respect to these two non-commutative
observables. In particular, it is known that, for anyclassical
state such as a thermal state, each variance must be bigger
than 1, i.e., 〈∆x̂2+〉 ≥ 1 and 〈∆x̂2−〉 ≥ 1; this lower bound
is called thequantum noise limit (QNL). Related to this limit,
we here introduce two important states in quantum optics:
coherent and squeezed states. A coherent state is the closest
possible analogue to a classical electromagnetic wave, which
is generated with a laser device. The coherent state|α〉 is
defined as an eigenvector ofâ with α ∈ C the corresponding
eigenvalue, i.e.,̂a|α〉 = α|α〉. Note that |0〉 represents a
vacuum state. A crucial property of|α〉 is that it achieves
the QNL, i.e., we have〈∆x̂2+〉 = 〈∆x̂2−〉 = 1 for any α,
meaning that a coherent state is a lowest-noise classical state.
On the other hand, a squeezed state is a purely non-classical
state with one of the quadrature variance below the QNL.
In particular, for an ideal pure squeezed state the quadrature

variances are given by〈∆x̂2+〉 = e2r and 〈∆x̂2−〉 = e−2r

with r ∈ R a unit-less parameter. Squeezed states play
important roles in quantum information technologies, because
for instanceentanglement, which is a key property to perform
various quantum information processing, can be generated
using squeezed states. Quantum information processing often
relies on highly entangled states, and this equivalently means
highly squeezed states are desirable. This is the reason why
squeezing enhancement is of vital important. In the next
subsection we briefly describe how to generate a squeezed
state of light.

B. Optical parametric oscillator as a linear system

Fig. 2. Schematic of the OPO. Arrows represent optical beamstravelling
along those directions.Mi are mirrors(i = 1, · · · , 4). A crystal between the
curved mirrorsM3 andM4 is a second-order nonlinear crystal.

Theoptical parametric process is a widely-used method for
generating a squeezed optical field, where a coherent optical
field is squeezed by the interaction with a strong pumping
field through a nonlinear medium. To produce a squeezed
state of light more effectively, it is common to use theoptical
parametric oscillator (OPO); a cavity that contains a second-
order nonlinear crystal. Figure 2 shows a conventional bow-tie
type cavity with four mirrors, where the mirrorM1 (input-
output port) is partially transmissive and the others are highly
reflective for the fundamental optical field. All the mirrors
are perfectly transparent for the pumping field. This system
renders the input coherent field̂ain1(t) interact with the
medium many times inside the cavity and finally produces a
well-squeezed field̂aout1(t) at the output port. These input and
output fields couple to the internal cavity field̂a(t) through
the mirrorM1 characterized by the power transmissivityT1.
Losses inside the OPO are modeled as a coupling between
â(t) and an unwanted vacuum field̂cin1(t) through one of the
end mirrorM2 with the transmissivityL1. Here we assume
that such interactions occur instantaneously, implying that the
outer fields satisfy the CCR[âin1(t), â

†
in1(t

′)] = δ(t− t′) and
[ĉin1(t), ĉ

†
in1(t

′)] = δ(t−t′). They can be viewed as a quantum
version of the classical white noise.

Let us describe the dynamics of the cavity field̂a(t).
In quantum mechanics, any observablêX changes in time
according to theHeisenberg equation dX̂/dt = i[X̂, Ĥ ],
where Ĥ = Ĥ† is called theHamiltonian. Now the system
Hamiltonian only forâ(t) is given by

Ĥsys = ω0â
†(t)â(t) +

i

2

[

ǫe−i2ω0tâ†(t)2 − ǫ∗ei2ω0tâ(t)2
]

,

where ω0 is the resonant frequency andǫ denotes the ef-
fectiveness of the nonlinear medium which depends on the
pumping field strength of frequency2ω0. Moreover,̂a(t) cou-
ples to the input field̂ain1(t) via the interaction Hamiltonian
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Ĥint = i
√
γ1(â(t)â

†
in1(t) − âin1(t)â

†(t)), whereγ1 := cT1/l
represents the damping rate withl the optical path length
in the OPO andc the speed of light. Also for the coupling
between̂a(t) and the loss field̂cin1(t) the HamiltonianĤloss

has the same form aŝHint with the damping rate replaced by
γL1 := cL1/l. Then the Heisenberg equation with Hamiltonian
Ĥsys + Ĥint + Ĥloss gives the followingquantum Langevin
equation

dâ(t)

dt
= −iω0â(t) + ǫe−2iω0tâ†(t)− γ

2
â(t)

+
√
γ1âin1(t) +

√
γL1ĉin1(t), (2)

whereγ := γ1 + γL1. The outer fields satisfy the following
boundary condition:

âout1(t) =
√
γ1â(t)− âin1(t). (3)

The single-input and single-output linear system given by Eqs.
(2) and (3) is the system generating a squeezed state of light.

As in the classical case, a simple input-output relation is
found in the Fourier domain̂O(Ω) =

∫

dtÔ(t)eiΩt/
√
2π,

where we have moved to the rotating frame at frequency
ω0 by setting Ô(t) = ô(t)eiω0t. We will deal with for
instanceÂin1(Ω) and Â†

out1(Ω), that corresponds tôain1(t)
and â†out1(t), respectively. As a result we have

Âout1(Ω) = G(Ω)Âin1(Ω) + g(Ω)Â†
in1(Ω)

+ Ḡ(Ω)Ĉin1(Ω) + ḡ(Ω)Ĉ†
in1(Ω), (4)

where

G(Ω) =
(γ1/2)

2 − (γL1/2− iΩ)2 + |ǫ|2
(γ/2− iΩ)2 − |ǫ|2 ,

Ḡ(Ω) =

√
γ1γL1(γ/2− iΩ)

(γ/2− iΩ)2 − |ǫ|2 ,

g(Ω) =
ǫγ1

(γ/2− iΩ)2 − |ǫ|2 , ḡ(Ω) =

√
γ1γL1ǫ

(γ/2− iΩ)2 − |ǫ|2 .

To evaluate the squeezing, let us introduce the (generalized)
quadrature in the Fourier domain:

X̂θ
out1(Ω) =

1

2

[

eiθÂout1(Ω) + e−iθÂ†
out1(Ω)

]

. (5)

We write X̂+
out1(Ω) = X̂0

out1(Ω) and X̂−
out1(Ω) = X̂

π/2
out1(Ω).

For Âin1(Ω) andĈin1(Ω) their quadratures are defined in the
same form as Eq. (5). Then, from Eq. (4) we have

X̂±
out1(Ω) = [G(Ω)± g(Ω)]X̂±

in1(Ω)+ [Ḡ(Ω)± ḡ(Ω)]X̂±
L1(Ω).

The variance ofX̂±
out1(Ω) is simply given by the power

spectrumS±
out1(Ω) := 〈|X̂±

out1(Ω)|2〉. In particular, when the
input field is a vacuum state, we have

S±
out1(Ω) = [G(Ω)± g(Ω)]2 + [Ḡ(Ω)± ḡ(Ω)]2.

If ǫ = 0, thenS±
out1(Ω) = 1, ∀Ω, which is the QNL. But a

squeezed state of light is generated whenǫ 6= 0; actually for
simplicity in the caseγL1 = 0, ǫ ∈ R, andΩ = 0, we have

S+
out1(0) =

(γ1 + 2ǫ

γ1 − 2ǫ

)2

, S−
out1(0) =

(γ1 − 2ǫ

γ1 + 2ǫ

)2

,

one of which is below the QNL. Note that the sign ofǫ
determines which quadrature is squeezed oranti-squeezed.

III. C OHERENT FEEDBACK CONTROL ON OPTICAL FIELD

SQUEEZING

Fig. 3. Schematic of the CF control on optical field squeezing.

The basic idea of the CF control for optical squeezing
enhancement is found in [11], [29]. We here study a realistic
model corresponding to an actually constructed optical system
in the laboratory, which takes into account time delays and
losses in the feedback loop.

The CF structure is depicted in Fig. 3. The system is the
OPO described in Sec. II. B. In this CF control scheme, a
beam splitter (BS) plays the roles of both a controller and an
input-output port. Hereafter we name this BS as thecontrol-
BS (CBS) to discern it from the other BSs. The transmissivity
T2 of the CBS is tuned to obtain higher squeezing level. The
coherent input fieldÂin2(t) is sent to one port of the CBS,
and then, one of its outputŝBout2(t) is sent to the OPO. The
output of the OPO,̂Aout1(t), is sent back to the CBS to close
the loop. Finally at the other output port of the CBS we will
find an enhanced squeezed field̂Aout2(t). The input-output
relation at the CBS is given by (in the rotating frame)

Âout2(t) =
√

1− T2Âin2(t)

+
√

T2
[

√

1− L2B̂in2(t) +
√

L2Ĉin2(t)
]

,

B̂out2(t) =−
√

1− T2
[

√

1− L2B̂in2(t) +
√

L2Ĉin2(t)
]

+
√

T2Âin2(t),

whereĈin2(t) is a vacuum field entering through a fictitious
BS with reflectivityL2, and this is a model of losses in the
CF loop.B̂in2(t) is the output of the OPO just before entering
this fictitious BS. Here it is assumed that the fictitious BS is
placed just before the CBS. Now letτa := la/c (τb := lb/c)
be the time delay resulting from the optical path lengthla (lb)
from (to) the CBS to (from) the OPO. Then we have

Âin1(t) = B̂out2(t−τa)eiω0τa , B̂in2(t) = Âout1(t−τb)eiω0τb .

Combining these equations with Eq. (4) the final input-output
relation is given in terms of the quadrature representationby

X̂±
out2(Ω)

=
[

√

1− T2 +
T2

√
1− L2α

±(Ω)

1 + α±(Ω)
√

(1− T2)(1 − L2)

]

X̂±
in2(Ω)

+

√

T2(1− L2)β
±(Ω)

1 + α±(Ω)
√

(1 − T2)(1 − L2)
X̂±

L1(Ω)

+
[

√

T2L2 −
√

T2(1 − L2)(1 − T2)L2α
±(Ω)

1 + α±(Ω)
√

(1− T2)(1− L2)

]

X̂±
L2(Ω),
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Fig. 4. The transmissivityT2 of the CBS versus the (a) squeezing and
(b) anti-squeezing levels for various normalized pumping strength x. The
blue, red, and green lines correspond tox = 0.1, x = 0.35, and x =
0.6, respectively. The circles indicate the values atT2 = 1 with L2 = 0,
corresponding to the uncontrolled OPO.

where

α±(Ω) = [G(Ω)± g(Ω)]ei(Ω+ω0)(τa+τb),

β±(Ω) = [Ḡ(Ω)± ḡ(Ω)]ei(Ω+ω0)τb .

When the input is a vacuum state, the power spectrum
S±
out2(Ω) := 〈|X̂±

out2(Ω)|2〉 is given by

S±
out2(Ω) =

∣

∣

∣

√

1− T2 +
T2

√
1− L2α

±(Ω)

1 + α±(Ω)
√

(1− T2)(1 − L2)

∣

∣

∣

2

+
T2(1− L2)|β±(Ω)|2

|1 + α±(Ω)
√

(1 − T2)(1 − L2)|2

+
∣

∣

∣

√

T2L2 −
√

T2(1− L2)(1− T2)L2α
±(Ω)

1 + α±(Ω)
√

(1− T2)(1 − L2)

∣

∣

∣

2

.

It is immediately verifiedS±
out1(Ω) = S±

out2(Ω) when the
system is just the uncontrolled OPO described in Section II-B,
i.e., T2 = 1 andL2 = 0. Also L2 = 1 leads toS±

out2(Ω) =
1 ∀Ω, implying that the CF loop loss will cause the overall
degradation of squeezing level in frequency. The time delays
appearing inα±(Ω) will affect on the control performance
as well, particularly for the effective bandwidth in frequency.
This will be seen later on. In what follows we assume that the
CF loop is on resonance, i.e.,eiω0(τa+τb) = −1.

Let us numerically evaluate the performance of how much
the CF control can enhance the squeezing, or equivalently,
can reduce the noise further. Here a set of practical values
of parameters are taken [24]:T1 = 0.12, L1 = 5.0 × 10−3,
L2 = 5.0× 10−2, l = 0.5 m, andla = lb = 0.25 m. To calcu-
lateS±

out2(Ω) we particularly focus on the values at frequency

Ω/2π = 1 MHz. Figure 4 depicts how the (a) squeezing and
(b) anti-squeezing levels depend onT2, with various values of
the normalized pumping strengthx := 2|ǫ|/γ. Here, the power
spectrum is shown in the unit of normalized magnitude, i.e.,
10 log10(S

±
out2/S

±
in2) dB, whereS±

in2(Ω) := 〈|X̂±
in2(Ω)|2〉 = 1

is the power of the vacuum input. Thus the horizontal axis
(0 dB) corresponds to the QNL. Now the circles indicate the
values atT2 = 1 with L2 = 0, i.e., the squeezing and anti-
squeezing levels of the uncontrolled OPO. Then, in the case
of weak pumping (x = 0.1 or x = 0.35), we findT2 such that
the squeezing level is enhanced by the CF control compared
to that of the uncontrolled OPO. However, in the case of
strong pumping (x = 0.6), the CF control cannot enhance
the squeezing at all. This is understood by considering the
trade-off between the enhancement of the nonlinear squeezing
effect and the CF loop loss; that is, the more strongly the
CF control enhances the nonlinear effect, the more loss it
must incur. Therefore, when the OPO is already pumped
strongly, the CF loop loss becomes dominant compared to the
enhancement of the nonlinear effect, and we cannot perform
much enhancement of the squeezing. This is a limitation of
the CF control for the squeezing enhancing problem.
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Fig. 5. Frequency dependences of the squeezing and anti-squeezing levels.
The green, red, pink, and blue lines represent those under the condition of
T2=0.7, 0.8, 0.9, and 1.0, respectively.

Next, to see the frequency-dependence of the CF control,
we calculateS±

out2(Ω) with fixed value atx = 0.1, which in
the above discussion was proven to be a value such that the
CF control has clear benefit. Figure 5 shows the squeezing
and anti-squeezing levels in the following cases:T2=0.7, 0.8,
0.9, and 1.0. Now the squeezing and anti-squeezing levels
of the uncontrolled OPO are almost the same as those with
T2 = 1 andL2 = 0.05, which are indicated by the blue lines.
Therefore, the squeezing enhancement can be evaluated by
simply comparing the squeezing level with the CF (T2 6= 1)
to that without the CF (T2 = 1), for a fixed value ofL2. (Note
this argument makes sense only in the case of weak pumping
power.) Then, in each case ofT2, the squeezing enhancement
is observed only at lower frequencies. Moreover, while better
squeezing is achieved by taking a smaller value ofT2, this
brings the narrower effective bandwidth in frequency. This
additional limiting property of the CF control is mainly dueto
the time delays occurred in the OPO and the feedback loop.
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IV. T HE COHERENT FEEDBACK EXPERIMENT

A. Experimental setup

s-pol beam

PZT5

PD4

PZT4

OPO

probe 

beam

HWP PBS1

99%R

50%R

Homodyne

detector

LO beam

pumping beam
PZT

PD

Frequency doubler

MCC

p-pol beam

PBS2

PZT2

PZT3

PZT1

PD1

PD3
PD2

PZT6

PBS3

CW Ti:S Laser

Fig. 6. Experimental configuration. OPO: optical parametric oscillator, MCC:
mode cleaning cavity, PD: photo detector, PZT: piezoelectric transducer, PBS:
polarized beam splitter, HWP: half wave plate, and LO: localoscillator. The
blue dashed line indicates the CF loop. The green dashed lineindicates the
Mach-Zehnder interferometer, which corresponds to the CBS.

Figure 6 shows our experimental setup. The light source is a
continuous-wave Ti:Sapphire laser (Coherent, MBR-110). The
wavelength is 860 nm and the beam is horizontally polarized.
A phase modulation of 10.4 MHz is applied on the beam for
locking of all cavities by Pound-Drever-Hall technique [4],
[6].

The system is composed of four parts. The first is a
frequency-doubler, which is a cavity to generate a second
harmonic beam of 430 nm [22]. This beam is used as a
pumping beam for the OPO. The second is a mode-cleaning
cavity (MCC). This cavity is used to clean up the spatial mode
of local oscillator (LO) for homodyne detection so that we can
attain higher mode matching between the LO and the squeezed
beam.

The third part consists of the OPO, the CBS, and the CF
loop. The structure of the OPO is the same as in [24]. In
order to realize several locking, aprobe beam is injected into
the OPO from the high-reflection-coated mirror. The reflected
beam is detected with PD1 and PD4 to get error signals
for locking the cavity and the relative phase between the
probe beam and the pumping beam. To lock the cavity we
demodulate the output of the PD1 with 10.4 MHz modulation
signal, and feed back the error signal to PZT1. On the other
hand, to lock the relative phase between the probe beam and
the pumping beam, we apply a phase modulation of 107 kHz
on the probe beam with PZT4. We demodulate the output of
the PD4 with 107 kHz modulation signal, and feed back the
error signal to PZT5. Furthermore, we obtain the probe beam
at the output port of the OPO which is used to lock the relative
phase between the probe beam and the LO beam as explained
later.

The CBS is realized by using a Mach-Zehnder (MZ) inter-
ferometer. The transmissivity can be determined by adjusting
the phase difference between two arms in the MZ interferom-
eter. In order to lock a particular transmissivity, a s-polarized

(s-pol) beam is injected into the CF loop from PBS2. Note
that this s-pol beam does not circulate in the CF loop. The
beam is detected by PD3 to give the error signal of the CBS,
which is fed back to PZT3. Additionally, to lock the CF loop,
we inject a p-polarized (p-pol) beam into the CF loop from
the mirror of 0.99 reflectivity. Note that this beam and the
squeezed beam counter-propagate, hence this beam does not
contaminate the CF output (the squeezed beam). We obtain
the error signal by demodulating the output of PD2 with 10.7
MHz modulation signal, and feed back it to PZT2.

The last part is homodyne detection. In order to measure
a specific quadrature amplitude accurately, the relative phase
between the probe beam (equivalently, the squeezed beam) and
the LO beam should be locked. The error signal is obtained
from the output of the homodyne detector by demodulating it
with 107 kHz modulation signal. The error signal is fed back
to PZT6. When measuring the squeezed beam, the probe beam
is set to 4µW, and the LO beam is set to 3 mW, so that we
can attain high signal-to-noise ratio without saturation of the
homodyne detector. The output of the homodyne detector is
measured with a spectrum analyzer.

B. Results and discussion
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Fig. 7. (a) Measurement results of the squeezing and anti-squeezing levels
at center frequency of 2.5 MHz. The green line represents thevacuum noise
level, i.e., the QNL. The blue lines represent the squeezingand anti-squeezing
levels without the CF, and the red lines represent those withthe CF whenT2 =
0.8. All the traces are averaged over 50 times. Dark noise is subtracted. (b)
T2-dependence of the squeezing and anti-squeezing levels at center frequency
of 2.5 MHz. Circles and solid curves represent experimentaland theoretical
values, respectively.

The parameters in this experiment are:x = 0.111, T1 =
0.20, L1 = 6.5 × 10−3, L2 = 0.12, l = 0.5 m, and
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la = lb = 0.25 m. First we measure the squeezing and anti-
squeezing levels with the CF (T2 = 0.8) and those without the
CF (T2 = 1.0). Note again that the squeezing enhancement
can be evaluated by comparing these two values. Figure 7
(a) shows the measurement results. The center frequency, the
resolution bandwidth, and the video bandwidth isΩ/2π = 2.5
MHz, 30 kHz, and 300 Hz, respectively. Here, because of a
practical reason explained later, we cannot take the frequency
Ω/2π = 1 MHz unlike the case discussed in Section III. The
green line represents the vacuum noise level, i.e., the QNL.
The blue lines represent the squeezing and anti-squeezing
levels without the CF, and the red lines represent those with
the CF. All the traces are normalized to the QNL. From Fig.
7 (a), we can see the effect of the CF control, showing the
squeezing enhancement from−1.64±0.15 dB to−2.20±0.15
dB and the anti-squeezing enhancement from 1.52±0.15 dB
to 2.72±0.15 dB.

We carry out measurements with severalT2; Fig. 7 (b)
shows T2-dependence of the squeezing and anti-squeezing
levels. Circles stand for the measurement results, and solid
lines show the following theoretical values [24]:S′′

±(Ω) =
1+ η(S±

out2(Ω)− 1), whereη represents the overall detection
efficiency given byη = ξ2ρ, ξ is homodyne visibility andρ is
quantum efficiency of photo diodes in the homodyne detector.
In our experiment, we obtainη = 0.961 with ξ = 0.985,
andρ = 0.99. Experimental and theoretical values show good
agreement. Marginal gaps are attributed to fluctuation of the
phase and the MZ interferometer locking.
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Fig. 8. Frequency dependence of the squeezing and anti-squeezing levels.
The blue lines represent those without the CF, while the green, red, and pink
lines correspond to the case with the CF under the condition of T2=0.7,
0.8, and 0.9, respectively. Dark noise is subtracted. Dashed lines indicate
theoretical values.

A feature of the CF control can be seen in broadband
measurement, where in this experiment we have observed that
x andL1 are a bit changed to:x = 0.106 andL1 = 9.0×10−3.
Figure 8 shows the frequency-dependence of the squeezing
and anti-squeezing levels up to 8 MHz. The blue solid lines
represent those without the CF, while the green, red, and
pink solid lines correspond to the case with the CF under
the condition ofT2=0.7, 0.8, and 0.9, respectively. At lower
frequencies we find large laser noises and modulation signals
used for several locking. This is the reason why, in our
experiment, highly effective squeezing enhancement at for
instanceΩ/2π = 1 MHz cannot be observed; hence this is

a practical limitation of the CF control. Except along such a
noisy region in frequency, the results show good agreements
with theoretical values illustrated with dashed lines, which are
almost the same as those shown in Fig. 5. That is, as discussed
in Section III, better squeezing enhancement certainly brings
the narrower effective bandwidth in frequency.

V. CONCLUSION

The first experimental demonstration of the CF control
for squeezing enhancement is demonstrated. The results well
agree with the theory that carefully takes into account the
effects of the actual laboratory setup particularly time de-
lays and losses occurring in the feedback loop. Although
our feedback system is limited to linear optics, the results
obtained in this work suggest realistic applicability of the
CF control to various highly nonlinear quantum systems such
as nanophotonic circuits [15], [21], which can be used for
quantum error correction.
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