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Experimental demonstration of coherent feedback
control on optical field squeezing

Sanae lida, Mitsuyoshi Yukawa, Hidehiro Yonezawa, Naokinganoto, and Akira Furusawa

Abstract—Coherent feedback is a non-measurement based, (@) (b)
hence a back-action free, method of control for quantum sys- Output Quantum Input Output Input
tems. A typical application of this control scheme is squeéag System OoPO
enhancement, a purely non-classical effect in quantum opts. In
this paper we report its first experimental demonstration that
well agrees with the theory taking into account time deIays ad Quantum Boam
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Fig. 1. (a) General structure of the CF control. The arrowsespond
. INTRODUCTION to unidirectional flows of “quantum signals” such as optitaser fields.

b) Optical system structure of the CF control for squeeznfpancement,
Feedback control theory has recently been further extencig)qefpondiné to Fig. 3. queeznb

to cover even quantum systems such as a single atom.

The methodologies are broadly divided into two categories:

measurement-based feedback control and-measurement-  Hare we mention about aqueezed dtate [25]; this is a
based one called theoherent feedback control. Below we nrely non-classical state where the fundamental quantum

briefly describe their major difference and particularlyp®s noise is reduced below the quantum noise limit in one of

cific feature of the latter control strategy. the quadrature observables such as the posijiand the
~ Quantum (continuous-time) measurement produces us&ftbmentump (a more detailed description will be given in
information (which is of course a continuous-time signaksection 11). Therefore, a situation in which noise reduttio
that can be fed back to the system of interest, though at thg the CF control shows the best efficiency may appear in
same time it introduces unavoidalback-action noise into roplems of generating squeezed states. Actually Yanagisa
the system([B],[[5]. A number of investigation of this tradeg) and Goughl[11] theoretically showed that this idea vgork
off have discovered several situations where the measumeme, the case of quantum optics. Figure 1 (b) illustrates the
based feedback control has clear benefits [27], for instansg loop structure they studied. The quantum system, which
an application to quantum error correction [1]. On the othef,,, corresponds to aaptical parametric oscillator (OPO),
hand, the coherent feedback (CF) contioll [12].1[18].1[17has an ability of noise reduction; that is, it transforms an
[26], [28], [29] takes a totally different approach. The geal 5yt coherent state into an output squeezed state. It was then
structure of the CF control is shown in Fig. 1 (a); thgnown that the performance of squeezing can be enhanced by
system outputs a “quantum signal”, then the controllercihi constrycting an appropriate CF controller, which in thiseca
is also a ql_Jantum system, coherently modulates_ the Ou%lbiven by abeam splitter with tunable transmissivity.
and feeds it back to control the system. In this schemeryg b ryose of this paper is to report the first experimental
any measurement is not performed, implying that no excegsmanstration of the above-mentioned CF control on optical
measurement back-action noise is introduced into the systg;q|q squeezing, which well agrees with the theory that care-
Because of this feature the CF control is suitable for dgahr]au"y takes into account the effects of the actual laborator
with problems ofnoise reduction, which is the central topic setup, particularly time delays and losses in the feed s |
in the control theory. Actually we find that the very succabsfryq reqyits are significant in the sense that, both theattic
noise-reducing controllers, the> and the Linear Quadratic 54 exnerimentally, they clarify the situation where the CF
Gaussian controllers, have natural CF control analodués [1;ono) s really effective and the limitation on how much it
[18], [19], [23], [2€]- can improve the system performance practically. Note that i
S. lida, M. Yukawa, H. Yonezawa, and A. Furusawa are with tepdtment [11], [29] a realistic closed loop model was not considered,
of Applied Physics, School of Engineering, The UniversifyTokyo, 7-3-1, hence such benefit and limitation are first clarified in this
HL?kn;]vt/)é ggﬂ'gg?ﬁ‘{ogyookgz '113-%?1162'513\/?)(32 (f'ﬂ?tﬂ;y-sanaa@k’i?a’%'am{nd- paper. Another important remark is that, while Mabuchi has
gokyo.acljp)‘ S lida and N'_Jp{(a%amoto are Vfi'ﬂ'] the bngarmm;)p%ed experimentally demonstrated classical noise reducticin thie
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applicability of the CF control to non-classical regime. variances are given byA#?) = e*” and (Az2) = e *"
with » € R a unit-less parameter. Squeezed states play
Il. PRELIMINARIES important roles in quantum information technologies, lnsea

In this section we provide some notions of quantum m(f}c_)r_lnstanceen;tangl E.'f'sl I, Wth'Ch IS a key property E)o performt d
chanics and the dynamics of an OPO. For more details q@ious gquantum information processing, can be generate
5 — using squeezed states. Quantum information processieg oft
[21, [7], [8], [9], [10], [L6]. - : - ,

relies on highly entangled states, and this equivalentlgmae
o . highly squeezed states are desirable. This is the reason why
A. Observables, states, and statistics in quantum optics squeezing enhancement is of vital important. In the next

In quantum mechanics, unlike the classical case, physisalbsection we briefly describe how to generate a squeezed
quantities must take different values probabilisticallpem state of light.
measuring them. The corresponding statistics is desciibed
terms of astate, which is represeqted by a unit vecter). In g Optical parametric oscillator as a linear system
general, when measuring a physical quantity represented by
self-adjoint operatolX = X, the mean and variance of the A 5
measurement results are respectively given by Pumping field A L Gim (@)

(X) = W|X|0), (AX2) = (| X20) — | X|)2, Gt Mz

where(y| is the adjoint to|¢)). That is, a state corresponds to
a probability distribution. For these statistical valuestake . . .
A L . ig. 2. Schematic of the OPO. Arrows represent optical beaaelling

real numbers, X must be Self'adjomt' aCtua”y n quantumalong those directionsV/; are mirrors(s = 1,--- ,4). A crystal between the
mechanics any physical quantity is represented by a selfirved mirrorsM3 and My is a second-order nonlinear crystal.
adjoint operator and is called afservable.

A single-mode quantum optical field is described with Theoptical parametric processis a widely-used method for
a field operatora and its adjointat, which respectively generating a squeezed optical field, where a coherent bptica
correspond to a complex amplitude and its conjugate offiald is squeezed by the interaction with a strong pumping
classical optical field. These operators satisfy theonical field through a nonlinear medium. To produce a squeezed
commutation relation (CCR) [a,af] = aa’ — a'a = 1. These state of light more effectively, it is common to use thytical
field operators are not self-adjoint, i.e., not observalilesce parametric oscillator (OPO); a cavity that contains a second-
let us define order nonlinear crystal. Figuké 2 shows a conventional kiew-
type cavity with four mirrors, where the mirrab/; (input-
output port) is partially transmissive and the others aghlyi
Analogous to the classical case, these observables aggl cdieflective for the fundamental optical field. All the mirrors
the amplitude and phase quadratures. The CCR for these are perfectly transparent for the pumping field. This system

! a outl (t)
L; a i

iy=a+al, 2. :=—i(a—al).

observables igi,,7_] = 2i, and because of this equalityrenders the input coherent field:,;(¢) interact with the

for any state the variances satisfy tHeisenberg’s uncertainty medium many times inside the cavity and finally produces a

relation: well-squeezed field,,: (¢) at the output port. These input and
<Aﬁr><A§72—> > 1. (1) output fields couple to the internal cavity fieldt) through

_ ) the mirror M, characterized by the power transmissivity.
This means that the amplitude and phase quadratures canses inside the OPO are modeled as a coupling between
be determined simultaneously. In other words, there isdunch(t) and an unwanted vacuum fiedg, () through one of the
mental uncertainty with respect to these two non—compuﬁatiend mirror M with the transmissivityL;. Here we assume
observables. In particular, it is known that, for aclgssical  that such interactions occur instantaneously, implyirag the
state such as a thermal state, each variance must be biggger fields satisfy the CCRuuni (t),al , (¢))] = 6(t — ') and

» Yinl

thanl, i.e., (A22) > 1 and (Az%) > 1; this lower bound [ (1), &L (1')] = 6(t—t'). They can be viewed as a quantum

is called thequantum noise limit (QNL). Related to this limit, \ersion of the classical white noise.

we here introduce two important states in quantum optics:| ¢t ys describe the dynamics of the cavity fiekdt).
coherent and squeezed states. A coherent state is thetdoﬁP%uantum mechanics, any observablie changes in time
possible analogue to a classical electromagnetic Wave:h"’hhccording to theHeisenberg equation dX/dt _ Z-[X’g],

is generated with a laser device. The coherent st@teis \yhere 7 = A7 is called theHamiltonian. Now the system
defined as an eigenvector éfwith a € C the corresponding yamiltonian only fora(t) is given by

eigenvalue, i.e.a|la) = ala). Note that|0) represents a _

vacuum state. A crucial property @) is that it achieves Hiys = woal (t)a(t) + f[ee*iQWUtaT(t)Q — e*ei?oty(1)?],

the QNL, i.e., we havgdAi?) = (A3?) = 1 for any q, 2

meaning that a coherent state is a lowest-noise classatal stwhere wy is the resonant frequency arddenotes the ef-
On the other hand, a squeezed state is a purely non-classieafiveness of the nonlinear medium which depends on the
state with one of the quadrature variance below the QNpumping field strength of frequen@u,. Moreover,a(t) cou-

In particular, for an ideal pure squeezed state the quadratples to the input fieldii, (¢) via the interaction Hamiltonian



IIl. COHERENT FEEDBACK CONTROL ON OPTICAL FIELD

i = iym(a(t)al | (t) — ama (t)at(t)), wherey, := ¢T1/1

represents the damping rate withthe optical path length SQUEEZING
in the OPO and: the speed of light. Also for the coupling
betweena(t) and the Joss field;n: (¢) the HamiltonianH)oss System
has the same form a;,; with the damping rate replaced by Aouti® C T A ©
~11 = cL1/1. Then the Heisenberg equation with Hamiltonian ,\
Hyys + Hing + Hioss gives the followingquantum Langevin LR
equat|on B()Btg(t) _ _Ci)ntroller
! CBS!
dd(t) N 2wt A . 4 . Ly
e —iwod(t) 4+ ee” 2ot (1) — ia(t) Bio® 70 :_ A Ao
VG () +Vném ), () Cinz®|  Ain2®

where := v, + vz1. The outer fields satisfy the following
boundary condition: Fig. 3.

doutl(t) - ﬁd(t) - dinl (t) (3)

The single-input and single-output linear system given bg.E
(2) and [B) is the system generating a squeezed state of li

As in the classical case, a simple input-output relation
found in the Fourier domairO(Q) = [ dtO(t)e’™ //2m,
where we have moved to the rotating frame at frequen
wo by setting O(t) = o(t)e’ot. We will deal with for
instanceAinl(Q) and Alutl(ﬂ)’ that corresponds t@iy1 (t)
anda! ., (t), respectively. As a result we have

Schematic of the CF control on optical field squeezing

The basic idea of the CF control for optical squeezing
enhancement is found in_[11], [29]. We here study a realistic
Pdel corresponding to an actually constructed opticaksys
1& the laboratory, which takes into account time delays and

osses in the feedback loop.

The CF structure is depicted in Figl 3. The system is the

PO described in Sec. Il. B. In this CF control scheme, a
beam splitter (BS) plays the roles of both a controller and an
input-output port. Hereafter we name this BS as ¢hastrol-
BS (CBS) to discern it from the other BSs. The transmissivity
T, of the CBS is tuned to obtain higher squeezing level. The
coherent input fieldfth(t) is sent to one port of the CBS,
and then, one of its outpuléoum(t) is sent to the OPO. The
output of the OPOAoutl(t), is sent back to the CBS to close
the loop. Finally at the other output port of the CBS we will
find an enhanced squeezed fie«hutz(t). The input-output
relation at the CBS is given by (in the rotating frame)

Aguea(t) =/1 — ToAina(t)
+ VT2 [\/1 = LaBina(t) + /LaCina(t)].
Boua(t) = — /1 = To[\/1 = LaBina(t) + /L2Cina(t)]
+ VT Aina (1),

Where(:“ing(t) is a vacuum field entering through a fictitious
BS with reflectivity Lo, and this is a model of losses in the
CF Ioop.Bing(t) is the output of the OPO just before entering
'théhis fictitious BS. Here it is assumed that the fictitious BS is
same form as EqLI5). Then, from Ef] (4) we have placed j_ust before the (_ZBS. Now let = lo/c (1p :=1p/c)

. A - ) be the time delay resulting from the optical path lenitii/;)
XE4(Q) = [G(Q) £g(V X5, (Q) +[G(Q) £g(Q)]XF,(Q).  from (to) the CBS to (from) the OPO. Then we have

inl
The variance ochflﬂ(Q) is simply given by the power A; () = Boua(t—7a)e™°™, Bina(t) = Agup (t—73)e™0™.
spectrumS=, () := (| XE,,(2)[?). In particular, when the

Aout1 () = G(Q)Awm1(Q) + g() AL, ()
+G(Q)Cinr(Q) + F(Q)CLL(Q), (@)

where

(/2% = (yp1/2 —iQ)? + |ef?

GO =" ar

AT /2 - i)

CO =GR ar e

_ e _ . VY1 YL1€
90 = amE e Y= G e

To evaluate the squeezing, let us introduce the (genedilize
guadrature in the Fourier domain:

0
Xoutl

1. ., » 0 A
(@) = 5[ Aows (@) + e AL, (@) (8)
We write X5, (2) = X0,1() and X, (Q) = X7/3(Q)
For A;,1(Q) and Ci,1 () their quadratures are defined in

Combining these equations with Ef] (4) the final input-otitpu

input field is a vacuum state, we have
Sout1 () = [G(Q) £ g(Q)]? + [G(Q) + 5(2))*,
If € =0, thenSE,  (Q) =1, VQ, which is the QNL. But a

outl

squeezed state of light is generated whes 0; actually for
simplicity in the caseyr; = 0,e € R, andQ = 0, we have

Sin© = (255 Spa = (250)

one of which is below the QNL. Note that the sign ef
determines which quadrature is squeezedrti-squeezed.

relation is given in terms of the quadrature representdiipn

Xoua(Q)

- [VI-To+ TVl L () A
1'|‘Oéi Q) (1 —Tg)(l —Lg)

To(1 — L) BE(2)

+ Ail(m
L+a®(Q)/(1 —T3)(1 - L2)
n {\/m _ VT2(1— Ly)(1 — Tz)Lzai(Q)}Xa(Q)’

1+a*(Q)y/(1-T)(1 - L2)



0 : 9 : Q/27 = 1 MHz. Figure[4 depicts how the (a) squeezing and

1 ] (b) anti-squeezing levels depend ©x with various values of
% -2;_//’/ the normalized pumping strength= 2|¢|/~. Here, the power
g ¥ ] spectrum is shown in the unit of normalized magnitude, i.e.,
$ 7 ’ 1010g10(S3uea/Siv) dB, WhereS L, () == (IXj,(Q)P) =1
% _5\\_/] is the power of the vacuum input. Thus the horizontal axis
T | (0 dB) corresponds to the QNL. Now the circles indicate the
S 4 ] values atly, = 1 with L, = 0, i.e., the squeezing and anti-
o | squeezing levels of the uncontrolled OPO. Then, in the case
-1g¢ o E s s 2 of weak pumping{ = 0.1 or = 0.35), we find T3 such that
Transmissivity T of the CBS the squeezing level is enhanced by the CF control compared
18 ‘ & ‘ to that of the uncontrolled OPO. However, in the case of
16 strong pumping £ = 0.6), the CF control cannot enhance
gw the squeezing at all. This is understood by considering the
2. \ trade-off between the enhancement of the nonlinear squgezi
.i?lo— ] effect and the CF loop loss; that is, the more strongly the
2 ] CF control enhances the nonlinear effect, the more loss it
% o must incur. Therefore, when the OPO is already pumped
E 4l ] strongly, the CF loop loss becomes dominant compared to the
2,—\; enhancement of the nonlinear effect, and we cannot perform
gs o ‘ g much enhancement of the squeezing. This is a limitation of

Transissivity Tof the CBS the CF control for the squeezing enhancing problem.

Fig. 4.  The transmissivityl» of the CBS versus the (a) squeezing and
(b) anti-squeezing levels for various normalized pumpitrergth z. The
blue, red, and green lines correspondato= 0.1, x = 0.35, andz =
0.6, respectively. The circles indicate the valuesTat = 1 with Ly = 0,
corresponding to the uncontrolled OPO.

where

= o H/N w S (6]
% L L

ai(Q) =[G(Q) £ g(Q)]ei(usD)(T&Jﬁb)’

BE(Q) = [G(Q) £ g(Q)]ei(Q‘H’JO)T};'
When the ingut is a vacuum state, the power spectrum 4
Siua(®) = ([ Xho(@)P) is given by

N - — To/T = Lya*(Q)
Sou2(€) = ’m—i_ 1+ a*(Q)/(1—T2)(1 — Lo)

Normalized noise power(dB)

4
Frequency(MHz)

Fig. 5. Frequency dependences of the squeezing and ae#zqg levels.

’2
The green, red, pink, and blue lines represent those undecdhdition of

T2(1 _ L2)|ﬁi (Q)|2 T»=0.7, 0.8, 0.9, and 1.0, respectively.
1+ a®(Q)\/(1 —To)(1 — L)|?

_ — + 2 Next, to see the frequency-dependence of the CF control,
+ |VTeLz - VI~ L)1~ Th)Laa (Q)\ we calculateS:E () with fixed value atz = 0.1, which in
1+ a®(Q)/(1 —To)(1 — L) - out21%
the above discussion was proven to be a value such that the

It is immediately verifiedSE (Q) = SZ,,(2) when the CF control has clear benefit. Figuré 5 shows the squeezing
system is just the uncontrolled OPO described in Sectid II-and anti-squeezing levels in the following casé€s=0.7, 0.8,
ie., Ty =1andLy = 0. Also L, = 1 leads toSE,(Q) = 0.9, and 1.0. Now the squeezing and anti-squeezing levels
1 V€, implying that the CF loop loss will cause the overalbf the uncontrolled OPO are almost the same as those with
degradation of squeezing level in frequency. The time delay, = 1 and L, = 0.05, which are indicated by the blue lines.
appearing ina® () will affect on the control performance Therefore, the squeezing enhancement can be evaluated by
as well, particularly for the effective bandwidth in freaqug. simply comparing the squeezing level with the CE & 1)
This will be seen later on. In what follows we assume that ttie that without the CF1> = 1), for a fixed value ofL,. (Note
CF loop is on resonance, i.@wo(Tat7) = _1, this argument makes sense only in the case of weak pumping

Let us numerically evaluate the performance of how mugiower.) Then, in each case ©%, the squeezing enhancement
the CF control can enhance the squeezing, or equivalenty/observed only at lower frequencies. Moreover, whiledrett
can reduce the noise further. Here a set of practical valusgueezing is achieved by taking a smaller valuelsf this
of parameters are taken [24]3 = 0.12, L; = 5.0 x 1073, brings the narrower effective bandwidth in frequency. This
Ly =5.0x1072,1=0.5m, andl, = I, = 0.25 m. To calcu- additional limiting property of the CF control is mainly dte
late ijltz(ﬂ) we particularly focus on the values at frequencthe time delays occurred in the OPO and the feedback loop.



IV. THE COHERENT FEEDBACK EXPERIMENT (s-pol) beam is injected into the CF loop from PBS2. Note
that this s-pol beam does not circulate in the CF loop. The
beam is detected by PD3 to give the error signal of the CBS,
which is fed back to PZT3. Additionally, to lock the CF loop,

_@—CW“ZWS“ we inject a p-polarized (p-pol) beam into the CF loop from
;- Frequency doubler ., the mirror of 0.99 reflectivity. Note that this beam and the

i pumping beam

| squeezed beam counter-propagate, hence this beam does not

A. Experimental setup

_ LObeam g contaminate the CF output (the squeezed beam). We obtain
v the error signal by demodulating the output of PD2 with 10.7
> j53ppolbeam . ! MHz modulation signal, and feed back it to PZT2.
HwWP - |pes1 s The last part is homodyne detection. In order to measure
yprobe Y spolbeam il o *) a specific quadrature amplitude accurately, the relatiasgh
beam H : Homodyne .
il - i |detector between the probe beam (equivalently, the squeezed beam) an
PD1... Vi . . . .
2 raz# i the LO beam should be locked. The error signal is obtained
PZT‘II Z from the output of the homodyne detector by demodulating it

PZT5

with 107 kHz modulation signal. The error signal is fed back
to PZT6. When measuring the squeezed beam, the probe beam
is set to 4uW, and the LO beam is set to 3 mW, so that we
Figa& IE><perimenta| configﬁratiog- OPO: optical parar;emscillgtor, MCC: can attain high signal-to-noise ratio without saturatidrihe

mode cleaning cavity, PD: photo detector, PZT: piezoetettansducer, PBS: ;
polarized beam splitter, HWP: half wave plate, and LO: lcastillator. The homOdyne d_etector. The output of the homOdyne detector is
blue dashed line indicates the CF loop. The green dashedriifieates the Measured with a spectrum analyzer.

Mach-Zehnder interferometer, which corresponds to the .CBS

Figure[® shows our experimental setup. The light source isB'a Results and discussion
continuous-wave Ti:Sapphire laser (Coherent, MBR-118¢ T
wavelength is 860 nm and the beam is horizontally polarized. 4

A phase modulation of 10.4 MHz is applied on the beam for a |
locking of all cavities by Pound-Drever-Hall techniqu€ ,[4] A e s A gy gl A o
A A AL gt A Ay Aty

(a)

[6].

The system is composed of four parts. The first is a
frequency-doubler, which is a cavity to generate a second
harmonic beam of 430 nni_[22]. This beam is used as a
pumping beam for the OPO. The second is a mode-cleaning |
cavity (MCC). This cavity is used to clean up the spatial mode —2W
of local oscillator (LO) for homodyne detection so that we ca ‘ ‘ ‘
attain higher mode matching between the LO and the squeezec 0 01 Time(seep 03
beam. (®)

The third part consists of the OPO, the CBS, and the CF ° ‘ ;
loop. The structure of the OPO is the same aslin [24]. In 2 ]
order to realize several locking,pobe beam is injected into R

the OPO from the high-reflection-coated mirror. The reflécte
beam is detected with PD1 and PD4 to get error signals
for locking the cavity and the relative phase between the
probe beam and the pumping beam. To lock the cavity we ]
demodulate the output of the PD1 with 10.4 MHz modulation ‘2’\;—1—/‘/
signal, and feed back the error signal to PZT1. On the other

hand, to lock the relative phase between the probe beam anc 35 o7 o8 o5
the pumping beam, we apply a phase modulation of 107 kHz Transmissivity § of the CBS
on the probe beam with PZT4. We demodulate the output of

: : : . 7. (a) Measurement results of the squeezing and anéezing levels
the PD4 with 107 kHz modulation S|gnal, and feed back ﬂg center frequency of 2.5 MHz. The green line representvabhaum noise

error signal to PZT5. Furthermore, we obtain the probe beagel, i.e., the QNL. The blue lines represent the squeeaihanti-squeezing
at the output port of the OPO which is used to lock the relativevels without the CF, and the red lines represent thoseth&CF wheril’, =

Il the traces are averaged over 50 times. Dark noise isacted. (b)
phase between the prObe beam and the LO beam as eXpla%% pendence of the squeezing and anti-squeezing leveénrdrequency

later. of 2.5 MHz. Circles and solid curves represent experimeatal theoretical
The CBS is realized by using a Mach-Zehnder (MZ) interalues, respectively.

ferometer. The transmissivity can be determined by adjgsti
the phase difference between two arms in the MZ interferom-The parameters in this experiment are= 0.111, 7} =
eter. In order to lock a particular transmissivity, a s-piaked  0.20, L; = 6.5 x 1073, L, = 0.12, I = 0.5 m, and

Normalize noise power(dB)
=

Normalized noise power(dB)

1



lo = Iy = 0.25 m. First we measure the squeezing and antk practical limitation of the CF control. Except along such a
squeezing levels with the CHY = 0.8) and those without the noisy region in frequency, the results show good agreements
CF (I> = 1.0). Note again that the squeezing enhancementth theoretical values illustrated with dashed lines, ehhare
can be evaluated by comparing these two values. Figlrealfost the same as those shown in Elg. 5. That is, as discussed
(a) shows the measurement results. The center frequemy,ithSection lll, better squeezing enhancement certainlggsri
resolution bandwidth, and the video bandwidtif2i®27 = 2.5 the narrower effective bandwidth in frequency.
MHz, 30 kHz, and 300 Hz, respectively. Here, because of a
practical reason explained later, we cannot take the fregyue
/27 = 1 MHz unlike the case discussed in Section Ill. The ] . )
green line represents the vacuum noise level, i.e., the QNL.The first experimental demonstration of the CF control
The blue lines represent the squeezing and anti-squeezfi%bsque_ez'ng enhancement is demonstrate(_j. The results wel
levels without the CF, and the red lines represent those wigree with the theory that carefully takes into account the
the CF. All the traces are normalized to the QNL. From Fiﬁ;ems of the actual laboratory setup particularly time de
[7 (a), we can see the effect of the CF control, showing thYS and losses occurring in the feedback loop. Although
squeezing enhancement frorl.64+£0.15 dB to—2.20+0.15 OUr feedback system is limited to linear optics, the results
dB and the anti-squeezing enhancement from (525 dB obtained in this work suggest realistic applicability ofeth
to 2.72+0.15 dB. CF control to various highly nonlinear quantum systems such
We carry out measurements with sevefal Fig. [@ (b) &S hanophotonic circgits; [15]._[21], which can be used for
shows T,-dependence of the squeezing and anti-squeezifigantum error correction.
levels. Circles stand for the measurement results, and soli

V. CONCLUSION

lines show the following theoretical valuels [24§/ (Q) = REFERENCES
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