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Emulating quantum cubic nonlinearity
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2Department of Optics, Palacký University, 17 listopadu 1192/12, 77146 Olomouc, Czech Republic
(Received 19 May 2013; revised manuscript received 31 July 2013; published 13 November 2013)

Unitary non-Gaussian nonlinearity is one of the key components required for quantum computation and other
developing applications of quantum information processing. Sufficient operation of this kind is still not available,
but it can be approximatively implemented with the help of a specifically engineered resource state constructed
from individual photons. We present experimental realization and thorough analysis of such quantum resource
states and confirm that the state does indeed possess properties of a state produced by unitary dynamics driven
by cubic nonlinearity.
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I. INTRODUCTION

Nonlinear interactions capable of manipulating the quan-
tum state of the harmonic oscillators form a very challenging
area of recent development in the field of modern quantum
physics. Handling these interactions is necessary not only
for the understanding of quantum nonlinear dynamics of the
harmonic oscillators, but also for achieving the standing long-
term goal of quantum information—the universal quantum
computation [1,2]. The operations needed are unitary, and both
Gaussian and non-Gaussian [3]. For a harmonic oscillator rep-
resenting a single mode of electromagnetic radiation, Gaussian
operations are relatively easy to obtain, but unitary single-
mode non-Gaussian nonlinearities are either not available or
are too weak to have an observable quantum effect. For other
physical systems, such as cold atoms [4] or trapped ions [5],
the non-Gaussian operations could be implemented using
additional anharmonic potentials, but multimode Gaussian
operations are hard to come by.

Quantum nonlinear operations for light can be obtained by
letting the system interact with individual atoms, ions [6,7],
or similar solid-state physical systems [8] and measuring
the discrete system afterwards. In this way, highly nonclas-
sical superposed coherent states were recently realized [9].
These quantum states possess strong nonlinear properties,
and they were not previously observed in the trapped ions
[7], the circuit cavity electrodynamics [10], and in the
optical continuous variables (CV) experiments with traveling
light [11,12]. However, of these systems, only the last one
currently allows implementation of deterministic Gaussian
operations and measurements [13–16], which are needed
for deterministic measurement-induced implementation of
high-order nonlinearities [17,18]. Considering that recently
single-photon detectors [3] were used to prepare states with
nonlinear properties at least approaching those of atomic
and solid-state systems [19], the toolbox of CV quantum
optics has everything it needs for tests of unitary nonlinear
dynamics. Please note, there is a difference between the
CV quantum optics and its discrete counterpart, relying on
encoding qubits into individual photons [20,21]. In both, the
desired nonlinearity can be obtained from measurements, and
highly nonlinear gates have indeed been implemented for
single photons [22]. However, the current level of technology
does not allow discrete quantum optics experiments to be truly

deterministic, as all measurements need to be performed in
coincidence basis.

In principle, to realize an arbitrary unitary operation of a
quantum harmonic oscillator, it is sufficient to have access
to the quantum cubic nonlinearity [1,23]. Cubic nonlinearity
is represented by a Hamiltonian Ĥ ∝ x̂3 [17], where x̂ =
(â + â†)/

√
2 is the position operator of the quantum harmonic

oscillator [â is the annihilation operator, and the momentum
operator is similarly defined as p̂ = (â − â†)/(i

√
2)]. As of

now, neither quantum cubic nonlinearity, nor quantum states
produced by it (cubic states), have been observed on any
experimental platform. Beginning from a ground state, even
the weak cubic interaction generates highly nonclassical states
[24]. However, the nonclassicality of these states lies in the
superposition of |1〉 and |3〉 (|1&3〉 for shorthand), and it
is unfortunately masked by the superposition of |1&3〉 with
the dominant ground state |0〉 [18], especially considering its
fragility with regard to damping of the oscillator. It is therefore
challenging not only to generate and detect these states, but
also to understand and verify their nonclassical features.

A nonlinear gate can be deterministically implemented by
coupling a specifically prepared ancillary state to the unknown
target via the Gaussian quantum nondemolition coupling.
The ancilla is then measured and the obtained value q is
used to drive nonlinear feed forward in the form of pair of
displacements proportional to q and q2 performed on the
target state. See Ref. [18] for more details. This approach was
initially discussed in [17,24,25] with the ideal state, which is
currently experimentally unfeasible. To remedy this issue, an
approximative weak cubic state, described as a superposition
of Fock states |0〉, |1〉, and |3〉, was recently proposed [18]. In
this paper we present the experimental, completely heralded
preparation of this state together with analysis of its nontrivial
nonclassical properties.

II. CUBIC STATE

The ideal cubic state, which can be used as a resource for
the nonlinear cubic gate, can be expressed as

∫
e−iχ0x̂

3 |x〉 dx.
Note that normalization factors are omitted in this paper
unless otherwise noted. The cubic state can be obtained by
applying cubic nonlinear interaction Û (χ0) = exp(−iχ0x̂

3) to
an infinitely squeezed state. Due to general inaccessibility of
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a cubic nonlinear operation, any physical realization of the
state needs to be some kind of approximation. For weak cubic
nonlinearity and finite energy, the state can be approximated
by Ŝ(−r)(1 − iχx̂3)|0〉 [18]. Here, the cubic nonlinearity χ

is given by χ = χ0e
3r , and Ŝ(−r) = exp[−(ir/2)(x̂p̂ + p̂x̂)]

is a squeezing operation, a Gaussian operation, which can
be considered feasible and highly accessible in contemporary
experimental practice [13–16]. The squeezing operation does
not affect the cubic behavior of the state and therefore can be
omitted in our first attempts to implement the cubic operation.
The approximative weak cubic state can be then expressed in
the Fock space as

|ψid〉 = (1 − iχx̂3)|0〉 = |0〉 − i
χ

√
15

2
√

2
|1&3〉, (1)

where |1&3〉 = (
√

3|1〉 + √
2|3〉)/√5. It is a specific superpo-

sition of zero, one, and three photons, but it can also be viewed
as a superposition of vacuum |0〉 with a state |1&3〉, which
in itself is an approximation of odd superposition of coherent
states. The vacuum contribution results from the first term of
the unitary evolution Û (χ ) ≈ 1 − iχx̂3. It is an important term
for the function of the deterministic cubic phase gate, but at
the same time it masks the nonclassical features of the state
|1&3〉.

The cubic state (1) is generated by means of the setup
depicted in Fig. 1. The nondegenerate optical parametric
oscillator (NOPO) generates an entangled two-mode squeezed
state

∑∞
n=0 λn|n〉i|n〉s. The idler mode i is then split into three

by a pair of beamsplitters, after which the states of the three
modes are displaced in a phase space by amplitudes α =
1.55λei90◦

, β = 1.19λei311◦
, and γ = 1.19λei229◦

. Finally,
each of the modes impinges on the avalanche photodiode
(APD). Simultaneous detection of a photon by the three
detectors then heralds approximative preparation of the signal

FIG. 1. (Color online) Experimental setup. NOPO, nondegener-
ate optical parametric oscillator; SC, split cavity; FC, filter cavity; HD,
homodyne detector; APD, avalanche photodiode; HWP, half-wave
plate; PBS, polarization beamsplitter; PZT, piezoelectric transducer.

mode s in the state

3∑

n=0

λn[〈1,1,1|i12D̂1(α)D̂2(β)D̂i(γ )Û 12
BSÛ

1i
BS|n,0,0〉i12]|n〉s,

(2)

where D̂k(.) represents the displacement operation on mode k,
Û kl

BS represents the beamsplitter between modes k and l, and
subscripts 1 and 2 describe the ancillary modes. For the suitable
choice of λ, this state turns into the required superposition (1).
Please note that the state is prepared from the higher Fock
number contributions of a single two-mode state, and not from
several single photons as in [26]. In this sense it is actually more
reminiscent of the proposal relying on repeated combinations
of displacements and photon subtractions performed on a
single-mode squeezed light [27]. As a consequence, the
photons forming the state are indistinguishable. There are also
no problems with mode structure, because the heralded state is
measured by homodyne detection, the local oscillator of which
perfectly defines the measured mode. Any multimode effects,
arising, for example, from imperfect coincidence of the APDs,
therefore directly translate to reduction of the overall quality
of the produced state.

III. THE EXPERIMENT

The light source is a continuous-wave Ti:sapphire laser
of 860 nm. With around 20 mW of pump beam of 430 nm,
a two-mode squeezed vacuum is generated from a NOPO,
which contains a periodically poled KTiOPO4 crystal as an
optical nonlinear medium. The pump beam is generated by
second harmonic generation of the fundamental beam and
frequency-shifted with an acousto-optic modulator by around
600 MHz (equal to the free spectral range of NOPO, �ω).
As a result, photon pairs of frequency ω (signal) and ω + �ω

(idler) are obtained (ω corresponds to the frequency of the
fundamental beam). The output photons are spatially separated
by a split cavity whose free spectral range is 2�ω. The idler
beam passing through the split cavity is sent to two frequency
filtering cavities, and subsequently split into three equal-
intensity beams with beamsplitters. The state of each beam
is then displaced by a specific amplitude by interfering it with
a displacement beam at a mirror of 99% reflectivity. The phase
of the displacement is controlled by piezoelectric transducers,
and the amplitude of the displacement is controlled by rotating
half-wave plates followed by polarization beamsplitters. The
idler photons are detected by APDs. When APDs detect
photons, they output electronic pulses which are combined
into an AND circuit to get threefold coincidence clicks. The
signal beam is measured by homodyne detection with a local
oscillator beam of 10 mW. The homodyne current is sent to an
oscilloscope and stored every time coincident clicks happen.
The density matrix and Wigner function of the output state
are then numerically reconstructed from a set of measured
quadratures and phases of the local oscillator beam.

IV. ANALYSIS OF THE EXPERIMENTAL STATE

The reconstructed quantum state, both its density matrix
ρ̂exp and its Wigner function, is shown in in Fig. 2(a). The
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FIG. 2. (Color online) (a) Wigner function and density matrix of
the experimentally generated state. (b) Wigner function and density
matrix of the experimentally generated state after a single photon is
numerically subtracted from the data.

traditional approach to quantifying the quality of a prepared
state is by using the fidelity, F = 〈ψid|ρ̂|ψid〉. In our case,
the generated state has a maximal fidelity of FM = 0.90 with
the ideal state (1) with χ = 0.166. However, due to the weak
nonlinearity, the same state has fidelity F0 = 0.95 with the
vacuum state. This does not suggest that vacuum is a better
cubic state but rather that the fidelity is not a good figure of
merit in our case. In order to verify the state, we will therefore
need to analyze it more thoroughly and devise new methods.

We can start by confirming the presence of nontrivial super-
positions of photon numbers present in (1). The overwhelming
influence of vacuum can be removed by applying a virtual
single-photon subtraction ρ̂exp → ρ̂1sub = âexpâ

†/ Tr[âexpâ
†].

For the ideal resource state, (1 − iχx̂3)|0〉, this should result
in a superposition |0〉 + √

2|2〉, which is a state fairly similar
to an even superposition of coherent states and, as such, it
should possess several regions of negativity. Thus we can
convert the cubic state into a state with well-known properties,
which can be easily tested. Figure 2(b) shows the Wigner
function and the density matrix of the numerically photon-
subtracted experimental state. Notice that two distinctive
regions of negativity are indeed present. Moreover, apart from
considerations involving specific states, the areas of negativity
sufficiently indicate nonclassical behavior of the initial state,
as they would not appear if the state was only a mixture
of coherent states, which does not produce entanglement
when divided on a beamsplitter [28]. The probability of two
photons p′

2 = 0.29 is clearly dominating over p′
1 = 0.12 and

p′
3 = 0.03, where p′

i = 〈i|ρ̂1sub|i〉. To show now that Fock
states |0〉 and |2〉 appear in the superposition and not in
the mixture, we use the normalized off-diagonal element
for states basis |φ〉 and |ξ 〉, Rξ,φ(ρ̂) = |〈ξ |ρ̂|φ〉|2

〈ξ |ρ̂|ξ〉〈φ|ρ̂|φ〉 , which

characterizes the quality of any unbalanced superposition.
Since the subtraction preserves the superposition of Fock
states, R0,2(ρ̂1sub) = 0.24 after the subtraction proves the
presence of coherent superposition originating from the state
|1&3〉. In a similar way we can confirm that the three-photon
element is significantly dominant over the two- and four-
photon elements. Two virtual photon subtractions transform
the state ρ̂exp → ρ̂2sub = â2ρ̂expâ

†2/ Tr[â2ρ̂expâ
†2], where the

single-photon state is present with a probability of p′′
1 =

〈1|ρ̂2sub|1〉 = 0.68. In a generated single-photon state this
would be a sufficient confirmation that the state cannot be
emulated by a mixture of Gaussian states. In our case it is the
argument for the strong presence of the three-photon element.

Our analysis confirms presence of the highly nonclassical
superposition state |1&3〉, but we also need to demonstrate
that the state appears in a superposition with the vacuum state,
not just as a part of mixture. For this we look at the normalized
off-diagonal element R0,1&3(ρ̂exp) between the |0〉 and |1&3〉
for the original (not photon-subtracted) experimental state,
which would attain a value of one for the ideal pure state
and a value of zero for a complete mixture. In our case the
value is R0,1&3(ρ̂exp) = 0.50, so the superposition is present,
even if it is not perfectly visible due to the effects of noise.
More importantly, the element is significantly larger than
R0,1&3⊥ (ρ̂exp) = 0.11, where |1&3⊥〉 = (

√
2|1〉 − √

3|3〉)/√5
is orthogonal to |1&3〉. This shows that the desired and
theoretically expected superpositions are dominant.

V. DETECTING CUBIC NONLINEARITY

We have shown that the state contains the required superpo-
sitions, which is a strong argument about the true nature of the
state. However, there is also some measure of noise present. It
is a valid question, then, whether the state does indeed behave
as the cubic state despite the imperfections. The cubic state
should be able to drive, even at this elementary level, the cubic
gate. One way the cubic gate manifests is observable even
at a semiclassical level. For a given quantum state, the cubic
nonlinearity transforms the first quadrature moments x̂in and
p̂in according to 〈x̂out〉 = 〈x̂in〉, 〈p̂out〉 = 〈p̂in〉 + 3χ〈x̂2

in〉. The
first moment of x̂ should be preserved, while the first moment
of p̂ should become linearly dependent on the second moment
〈x̂2〉 = var(x) + 〈x̂〉2. Note that var(x) is a variance of x̂. If
we choose a set of input states with identical variances, there
should be observable quadratic dependence of the first moment
of p̂ on the first moment of x̂.

The easiest way the cubic gate can be implemented relies on
mixing the prepared ancilla with the target state on a balanced
beamsplitter, which is followed by projecting the ancilla onto
the quadrature eigenstate |x = 0〉 by homodyne detection. This
is the probabilistic version of the cubic gate [18] and it is
similar to using single photons to obtain a probabilistic map
[29]. As the set of target states, we will consider coherent
states |α〉, where 0 � α � 1, with first moments 〈x̂in〉 = √

2α

and 〈p̂in〉 = 0. The operation, imprinting nonlinearity from the
ancillary mixed state ρ̂A to the target state ρ̂in = |α〉〈α|, can
be realized by the map

ρ̂out = TrA[ÛBSρ̂in ⊗ ρ̂AÛ
†
BS|x = 0〉A〈x = 0|], (3)
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FIG. 3. (Color online) First moment of p for various coherent
states: ideal state with χ = 0.090 (dashed blue line), experimentally
generated state (dotted green line), and experimentally generated state
after the suitable displacement �p = −0.16 (solid red line).

where ÛBS is a unitary operator realizing transformation by a
balanced beamsplitter. This map fuses two states with wave
functions ψS(xS) and ψA(xA) into a state with wave function
ψS(xS/

√
2)ψA(xS/

√
2). The factor

√
2 only introduces linear

scaling of the measured data and has no influence on any
nonlinear properties. Since the imprinting operation uses
only Gaussian tools, any non-Gaussian nonlinearity of the
transformed state needs to originate in nonlinear properties
of the ancillary state ρ̂A. We have numerically simulated the
procedure, and the behavior of the first moment of quadrature
p̂ is plotted in Fig. 3. We can see that the dependence is
distinctively quadratic. This behavior is actually in a very
good match with that of the ideal cubic state (1) with χ =
0.090. They only differ by a constant displacement, which
has probably arisen due to experimental imperfections and
which can be easily compensated. This showcases our ability
to prepare a quantum state capable of imposing high-order
nonlinearity in a different quantum state.

We can also attempt to observe the cubic nonlinearity
directly, using the density matrix in coordinate representation.
In this picture, the continuous density matrix elements are
defined as ρ(x,x ′) = 〈x|ρ̂|x ′〉. The cubic nonlinearity is
best visible in the imaginary part of the main antidiagonal:
for the ideal state (1 − iχx̂3)|0〉〈0|(1 + iχx̂3), the density
matrix elements are Im[ρ(x, − x)] = 2χx3e−x2

and the cubic
nonlinearity is nicely visible. One problem in this picture
is that the cubic nonlinearity can be concealed by other
operations. The second-order nonlinearity does not manifest
in the imaginary part (not even order nonlinearities do), but
a simple displacement can conceal the desired behavior. On
the other hand, displacement can be quite straightforwardly
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(x
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FIG. 4. (Color online) Imaginary parts of the antidiagonal values
of coordinate density matrices for the ideal state with χ = 0.090
(dashed blue line), the experimentally generated state (dotted green
line), and the experimentally generated state after the suitable
displacement �p = −0.17 (solid red line).

compensated by performing a virtual operation on the data.
The comparison of the ideal state, the generated state, and
the displaced generated state can be seen in Fig. 4. We can
see that although the cubic nonlinearity is not immediately
apparent, the suitable displacement can effectively reveal it.
This nicely witnesses our ability to conditionally prepare a
quantum state equivalent to the outcome of the required higher-
order nonlinearity.

VI. SUMMARY AND OUTLOOK

In conclusion, we have generated a heralded nonclassical
non-Gaussian quantum state of light, which exhibits key
features of a state produced by unitary dynamics driven
by cubic quantum nonlinearity. Our experimental test has
demonstrated the feasibility of conditional optical preparation
of the ancillary resource state for the cubic measurement-
induced nonlinearity. Our analysis has contributed to general
understanding of quantum states produced by the higher-order
quantum nonlinearities. This understanding is a crucial step
towards physically implementing these nonlinearities as a part
of quantum information processing, and we expect information
regarding the first attempts in this direction to appear soon.

ACKNOWLEDGMENTS

This work was partly supported by the SCOPE program
of the MIC of Japan, PDIS, GIA, G-COE, and APSA
commissioned by the MEXT of Japan, FIRST initiated by
the CSTP of Japan, and ASCR-JSPS. K.M. acknowledges
financial support from ALPS. P.M. and R.F. acknowledge the
support of the Czech 323 Ministry of Education under Grant
No. LH13248 and of the grant P205/12/0577 of GACR.

[1] S. Lloyd and S. L. Braunstein, Phys. Rev. Lett. 82, 1784
(1999).

[2] N. C. Menicucci, P. van Loock, M. Gu, Ch. Weedbrook, T. C.
Ralph, and M. A. Nielsen, Phys. Rev. Lett. 97, 110501 (2006).

[3] A. Furusawa and P. van Loock, Quantum Teleportation and
Entanglement: A Hybrid Approach to Optical Quantum Infor-
mation Processing (Wiley-VCH Verlag GmbH & Co. KGaA,
Germany, 2011).

053816-4

http://dx.doi.org/10.1103/PhysRevLett.82.1784
http://dx.doi.org/10.1103/PhysRevLett.82.1784
http://dx.doi.org/10.1103/PhysRevLett.97.110501


EMULATING QUANTUM CUBIC NONLINEARITY PHYSICAL REVIEW A 88, 053816 (2013)

[4] W. K. Hensinger et al., Nature (London) 412, 52 (2001);
M. Anderlini et al., ibid. 448, 452 (2007); S. Fölling et al.,
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