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Gain tuning for continuous-variable quantum teleportation of discrete-variable states
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We present a general formalism to describe continuous-variable (CV) quantum teleportation of discrete-variable
(DV) states with gain tuning, taking into account experimental imperfections. Here the teleportation output is
given by independently transforming each density matrix element of the initial state. This formalism allows us
to accurately model various teleportation experiments and to analyze the gain dependence of their respective
figures of merit. We apply our formalism to the recent experiment on CV teleportation of qubits [S. Takeda et al.,
Nature 500, 315 (2013)] and investigate the optimal gain for the transfer fidelity. We also propose and model an
experiment for CV teleportation of DV entanglement. It is shown that, provided the experimental losses are within
a certain range, DV entanglement can be teleported for any nonzero squeezing by optimally tuning the gain.
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I. INTRODUCTION

Quantum teleportation [1] plays a central role in the transfer
and manipulation of quantum states. It was originally proposed
for discrete-variable (DV) two-level systems [1] and later
extended to continuous-variable (CV) systems in an infinite-
dimensional Hilbert space [2,3]. In optics, experimental
realizations have followed for both systems. DV teleportation
has been performed for qubits represented by photons, albeit
probabilistically and postselectively [4,5]. In contrast, CV tele-
portation has been performed deterministically for quadrature
variables of electromagnetic fields, however, with a relatively
low fidelity due to the finite level of resource squeezing
[6,7]. Recently, Ref. [8] reported a “hybrid” experiment—CV
teleportation of qubits—and overcame the previous limitations
in both the DV and the CV regime. Not only was deterministic
qubit teleportation realized there, but also it was demonstrated
that tuning the feedforward gain in CV teleportation enables
one to faithfully transfer qubit information even with finite
squeezing, eventually leading to higher fidelities.

The usefulness of gain tuning for teleporting DV states is
well known. However, a full gain optimization is a nontrivial
problem. An accurate model for the hybrid teleportation
scheme is required to obtain the optimal gain for every
experimental setup and figure of merit. Thus far, gain-tuned
teleportation of qubits or single photons has been theoretically
analyzed in Refs. [9–12] using the Heisenberg picture and
the Wigner function. However, these models are specifically
adapted to investigate the optimal gains for certain figures of
merit, such as the value of the Clauser-Horne-type inequality,
visibility, or the negativity of the Wigner function. Thus, they
cannot be directly applied to more general cases. A different
model, employing a more general density-matrix formalism,
has been developed in Refs. [13–16] by introducing the
so-called transfer operator. Though the transformation of DV
states can be intuitively and explicitly described in this model,
these calculations assumed an ideal loss-free condition when
the input state and the resource squeezing are perfectly pure.
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The extension of this model to the realistic situation including
losses is hindered by the complexity of taking into account the
impurity of squeezing in the density-matrix formalism.

Here we present a general formalism to explicitly describe
CV teleportation of DV states with gain tuning. The key
element of our formalism is to define the transformation of
each density-matrix element in the teleportation channel using
Wigner functions. The density matrix of the teleportation
output is then given by independently transforming each
density-matrix element of the initial state. The experimental
losses in the input state and squeezing can be included in the
Wigner functions, and hence realistic experimental conditions
can be simulated.

Our formalism can be straightforwardly applied to various
hybrid teleportation experiments to investigate the optimal
gain tuning for a given figure of merit. In this paper, we apply
the formalism to two types of hybrid teleportation experiments.
First, the CV teleportation of photonic qubits in Ref. [8]
is modeled. We investigate the gain dependence of fidelity
considering experimental inefficiencies, and we show that our
model is in good agreement with the experimental results.
Second, CV teleportation of DV entanglement is proposed and
modeled. Such an experiment can be readily implemented with
current technology and it will allow for a more efficient transfer
of DV entanglement than previous teleportation schemes. We
derive a sufficient condition to teleport DV entanglement, and
we prove that, provided the experimental losses are within
a certain range, DV entanglement can be teleported for any
nonzero squeezing by optimally tuning the gain.

The paper is organized as follows. Our general formalism
is derived in Secs. II and III. First, CV teleportation is
generally modeled in the Wigner-function formalism and the
effect of gain tuning is discussed in Sec. II. Section III
then focuses on CV teleportation of DV states, deriving the
formalism to describe the transformation of density matrices.
This formalism is applied to two specific cases in the following
two sections. Section IV considers CV teleportation of a
photonic qubit, investigating the optimal gains to achieve
maximal fidelity. In Sec. V, an experiment for CV teleportation
of DV entanglement is proposed and modeled based on
our formalism, including a discussion of the condition for
teleporting entanglement. Finally, Sec. VI concludes the paper.
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FIG. 1. (Color online) Schematic of CV teleportation. HD,
homodyne detection.

II. GAIN TUNING OF CV TELEPORTATION IN THE
WIGNER-FUNCTION FORMALISM

Wigner functions are useful tools to describe Gaussian
states and operations, including the effect of photon losses,
in a simpler way compared to density matrices. The aim
of this section is to derive an input-output relation for CV
teleportation in the Wigner-function formalism, including
parameters for gain, squeezing level, and loss of squeezing.
Our results can be regarded as a generalization of those in
Refs. [3,12,17], which do not include all these parameters
at the same time. From the derived formula, we show
that the effect of a non-unit-gain teleportation channel is
closely related to that of an attenuation and an amplification
channel.

We start by following the standard Braunstein-Kimble
protocol [3] in the non-unit-gain regime. A schematic of
CV teleportation is depicted in Fig. 1. The initial step
for a sender “Alice” and a receiver “Bob” is to share a
two-mode Einstein-Podolsky-Rosen (EPR) entangled state.
It can be approximately generated by suitably mixing at a
beam splitter two impure single-mode squeezed states of
squeezed quadrature variance Vsq = [(1 − l)e−2r + l]/2 and
antisqueezed quadrature variance Van = [(1 − l)e2r + l]/2,
where h̄ = 1, r is a squeezing parameter, and l denotes loss
(0 � l � 1). The Wigner function of the EPR state is written
as a function of quadratures of Alice’s mode ξA = (xA,pA)T

and Bob’s mode ξB = (xB,pB)T :

WEPR(ξA,ξB) = 1

4π2VanVsq
e−ξT

AB�−1ξAB . (1)

Here ξAB = (xA,pA,xB,pB)T and

� =
(

V 1l Cσz

Cσz V 1l

)
(2)

is the covariance matrix with V = Van + Vsq, C = Van − Vsq,
1l an identity matrix, and σz a Pauli matrix. Alice then mixes her
part of the EPR state and the input state Win(ξin), where ξin =
(xin,pin)T , by a 50:50 beam splitter: (ξin,ξA) → (ξu,ξv) =
((ξin − ξA)/

√
2,(ξin + ξA)/

√
2). The resulting overall Wigner

function is

Wtot(ξu,ξv,ξB) = Win

(
ξu + ξv√

2

)
WEPR

(
ξv − ξu√

2
,ξB

)
, (3)

where ξi = (xi,pi)T for i = u,v. Alice measures (xu,pv) and
sends the results ζ = (xu,pv)T to Bob, who displaces his part
of the EPR state with feedforward gain g > 0 as ξout = ξB +

√
2gζ . The final teleported state is obtained by integrating over

all possible measurement results ζ [3,17],

Wout(ξout)=
∫

dxudpudxvdpvWtot(xu,pu,xv,pv,ξout −
√

2gζ )

= 1

g2
[Win ◦ Gτ ]

(
ξout

g

)
. (4)

Here ◦ denotes convolution, and Gτ (ξ ) = (2πτ )−1

exp[−ξT ξ/(2τ )] is a normalized Gaussian of variance

τ = Van

2

(
1 − 1

g

)2

+ Vsq

2

(
1 + 1

g

)2

. (5)

Equation (4) shows that the CV teleportation channel for a
given (r,l,g) is equivalent to a thermalization process described
by a Gaussian convolution Win(ξ ) → [Win ◦ Gτ ](ξ ) followed
by a rescaling ξ → ξ/g in phase space. For l = 0, Wout(ξ ) =
Win(ξ ) is obtained in the limit of r → ∞ at g = 1; otherwise
the performance is limited by l, as indicated by τ → l in
the limit of r → ∞. Note that for l = 0, Eq. (4) becomes
equivalent to Eq. (6) in Ref. [17], and for l = 0 and g = 1, it
is simplified to Wout(ξout) = [Win ◦ Ge−2r ](ξout) and coincides
with Eq. (4) in Ref. [3]. The special case of ξout = 0 in Eq. (4)
was also derived and used in Ref. [12]. In this sense, the
input-output relation of Eq. (4) generalizes all previous ones
in the Wigner-function formalism.

The process of non-unit-gain teleportation, described in
Eq. (4), can be explained by a combination of unit-gain
teleportation, pure attenuation, and pure amplification (“pure”
indicates the optimal attenuation or amplification with min-
imum excess noise [18]). The pure attenuation is a channel
which applies “beam-splitter loss” of 1 − ε (0 < ε < 1) to the
input state. It can be written as âout = √

εâin + √
1 − εâvac in

the Heisenberg picture, where each â denotes an annihilation
operator of the output, input, and auxiliary vacuum mode,
respectively. In the Wigner-function formalism, the input-
output relation is given by [18,19]

Wout(ξout) = 1

ε
[Win ◦ G 1−ε

2ε
]

(
ξout√

ε

)
. (6)

In contrast, the pure-amplification channel amplifies the input
signal as âout = √

γ âin + √
γ − 1â

†
vac (γ > 1), described in

the Wigner-function formalism by [18]

Wout(ξout) = 1

γ
[Win ◦ Gγ−1

2γ
]

(
ξout√

γ

)
. (7)

Equations (4), (6), and (7) represent Gaussian channels com-
posed of a Gaussian convolution and phase-space rescaling.
Importantly, two successive Gaussian channels of convolution
of Gτi

followed by a rescaling ξ → ξ/gi (i = 1,2), can be
reduced to one Gaussian channel of Gτ ′ and ξ → ξ/g′ with
τ ′ = τ1 + τ2/g

2
1 and g′ = g1g2. In the case of 0 < g < 1,

Eq. (4) can be decomposed into two successive Gaussian
channels of τ1 = τ − τ2, g1 = 1, and τ2 = (1 − g2)/2g2,
g2 = g. This means that below-unit-gain teleportation can be
regarded as a sequence of unit-gain teleportation (convolution
of Gτ1 ) and pure attenuation [Eq. (6) at ε = g2]. For a given
(r,l), the thermalization effect of Gτ1 is minimized at the
gain of gatt = (Van + Vsq − 1)/(Van − Vsq) = tanh r , where τ1

takes its minimum value of τmin
1 = (4VanVsq − 1)/[2(Van +
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Vsq − 1)] = l. Interestingly, this gain depends only on r (not
on l), and the minimum τ1 is equal to the lower bound of
τ in the unit-gain regime (τ → l for g = 1 and r → ∞,
as mentioned above). When l = 0 and thus τ1 = 0, the
teleportation channel at gatt is equivalent to a pure-attenuation
channel at ε = tanh2 r . Otherwise τ2 is always positive and
the thermalization effect is unavoidable. A similar discussion
can be made for g > 1. By decomposing Eq. (4) into two
successive Gaussian channels of τ1 = (g2 − 1)/2g2, g1 = g,
and τ2 = g2(τ − τ1), g2 = 1, above-unit-gain teleportation can
be regarded as a sequence of pure amplification [Eq. (7) at
γ = g2] and unit-gain teleportation (convolution of Gτ2 ). The
minimum value of τmin

2 = l is achieved at the gain of gamp =
tanh−1 r . For l = 0, the teleportation channel at gamp becomes
equivalent to a pure-amplification channel at γ = tanh−2 r .
The equivalence to pure-attenuation and pure-amplification
channels at l = 0 has been derived using different methods in
Refs. [9,14,20].

Thus far, we have only discussed one simple CV telepor-
tation channel, as expressed by Eq. (4). However, an actual
experimental situation is typically more complex. For example,
in single-mode CV teleportation experiments [6,7,21–24], an
input state is first attenuated (loss), next teleported, and, finally,
attenuated again by the measurement (finite measurement
efficiency); the overall channel thus should be written as three
consecutive Gaussian channels. However, such a complex
channel, composed of consecutive CV teleportation, pure
attenuation, and amplification, can be described by only one
input-output relation, similar to Eq. (4). The reason is that
two consecutive Gaussian channels can be reduced to one
Gaussian channel, as mentioned above; thus any number of
consecutive Gaussian channels can be simplified to just one,
written as

Wout(ξout) = 1

g2
tot

[
Win ◦ Gτtot

](ξout

gtot

)
, (8)

with only two parameters, τtot and gtot, to characterize the
overall channel property. This is of great convenience for
describing various types of CV teleportation experiments in
an accurate and compact fashion. Besides the example of
single-mode CV teleportation, Eq. (8) is also applicable to the
case when CV teleportation is performed successively [25].

III. TELEPORTATION OF DV STATES IN THE
TRANSITION-OPERATOR FORMALISM

The next step is to derive the transformation of DV states in a
CV teleportation channel by applying the input-output relation
of Eq. (4) to such states. DV states of particular interest are
the following two types of a qubit. One is a singe-rail encoded
qubit,

|ψ〉s = α|0〉 + β|1〉, (9)

expressed in the photon number basis (|α|2 + |β|2 = 1), where
the photon number directly represents the logical 0 and 1 (see,
e.g., Refs. [5,26]). The other is a dual-rail encoded qubit,

|ψ〉d = α|0〉X ⊗ |1〉Y + β|1〉X ⊗ |0〉Y, (10)

where the logical 0 and 1 are represented by the mode (X or
Y) in which the photon is present (see, e.g., Refs. [4,8,27]).

CV teleportation of these states can be expressed by a
transformation between non-Gaussian Wigner functions using
Eq. (4). However, below we may convert our representation
from Wigner functions to density matrices in order to describe
the transformation more intuitively and conveniently. The
formalism derived below is applicable to various types of
hybrid teleportation experiments.

In order to calculate the density matrix corresponding to a
given Wigner function, we start by introducing the following
function of an operator Â:

WÂ(x,p) = 1

2π

∫
dy eipy

〈
x − y

2
| Â | x + y

2

〉
. (11)

This is a generalized version of the Wigner function for an
arbitrary, not necessarily Hermitian, operator Â. When Â is a
density operator, this function describes the Wigner function
of the corresponding state. For Â = |m〉〈n| (photon number
basis, m � n � 0), Eq. (11) can be expressed by the Laguerre
function L [28] as

W |m〉〈n|(ξ ) = (−1)n

π

√
n!

m!
(
√

2vT ξ )m−n

×Lm−n
n (2ξT ξ ) exp[−ξT ξ ], (12)

where ξ = (x,p)T and v = (1, − i)T . In the case of n > m �
0, we need to replace n → m, m → n, and ξ → σzξ on the
right-hand side of Eq. (12). When an input state ρ̂in is expanded
in the photon number basis as ρ̂in = ∑

m,n ρmn
in |m〉〈n|, the

corresponding Wigner function can also be expanded as
Win(ξ ) = ∑

m,n ρmn
in W |m〉〈n|(ξ ). By using Eq. (4) and linearity

of convolution, the Wigner function of the teleported state ρ̂out

can be written as

Wout(ξ ) =
∑
m,n

ρmn
in W

|m〉〈n|
out (ξ ), (13)

where we define

WÂ
out(ξ ) ≡ 1

g2
[WÂ ◦ Gτ ]

(
ξ

g

)
. (14)

The Wigner functions in Eq. (13) can be converted to their
corresponding density matrices. From Wout(ξ ), each density
matrix element 〈j |ρ̂out|k〉 is obtained by [28]

〈j |ρ̂out|k〉 = 2π

∫∫
dξWout(ξ )W |k〉〈j |(ξ )

=
∑
m,n

ρmn
in · 2π

∫∫
dξW

|m〉〈n|
out (ξ )W |k〉〈j |(ξ ). (15)

Next we define a transition operator T̂ (Â) as

T̂ (Â) =
∑
j,k

2π

∫∫
dξWÂ

out(ξ )W |k〉〈j |(ξ )|j 〉〈k|, (16)

describing a map from an operator to an operator: Â �→ T̂ (Â).
This map describes the transition of a density matrix element
Â through the CV teleportation channel of Eq. (4). By
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substituting Eq. (16) into Eq. (15), we get

〈j |ρ̂out|k〉 = 〈j |
∑
m,n

ρmn
in T̂ (|m〉〈n|)|k〉

⇐⇒ ρ̂out =
∑
m,n

ρmn
in T̂

(|m〉〈n|). (17)

Thus, the output density matrix is obtained by replacing
|m〉〈n| → T̂

(|m〉〈n|) for any given-input density matrix ρ̂in =∑
m,n ρmn

in |m〉〈n|. In this picture, the final density matrix at
the output is a combination of each density matrix element
teleported independently.

Before applying this transition-operator formalism
to qubits, we derive the expression of T̂

(|m〉〈n|) =∑
j,k Tmn→jk|j 〉〈k| for m,n = 0,1, where the coefficient

Tmn→jk ≡ 2π

∫∫
dξW

|m〉〈n|
out (ξ )W |k〉〈j |(ξ ) (18)

represents the transition probability for a component |m〉〈n| to
be transformed into |j 〉〈k| by teleportation. To calculate this,
we obtain the following functions from Eqs. (12) and (14),

W
|0〉〈0|
out (ξ ) = 1

λπ
exp[−ξT ξ/λ], (19)

W
|1〉〈0|
out (ξ ) = W

|0〉〈1|
out (σzξ ) =

√
2vT ξg

λ2π
exp[−ξT ξ/λ], (20)

W
|1〉〈1|
out (ξ ) = (2g2ξT ξ + λ(λ − 2g2))

λ3π
exp[−ξT ξ/λ]. (21)

Here we have introduced a new parameter λ ≡ g2(2τ + 1) for
simplicity. The condition λ � 1 can be proven from Eq. (5),
and the equality is attained if and only if l = 0 and g = tanh r .
By substituting the above functions and Eq. (12) into Eq. (18),
we obtain

T00→jk = 2(λ − 1)k

(λ + 1)k+1
δj,k, (22)

T10→jk = T01→kj = 4g
√

k + 1(λ − 1)k

(λ + 1)k+2
δj,k+1, (23)

T11→jk = 2(λ − 1)k−1

(λ + 1)k+2
[(λ − 2g2 + 1)(λ − 1) + 4kg2]δj,k,

(24)

where δj,k is the discrete Kronecker δ function. All the
coefficients above are non-negative. It can be seen that the
diagonal elements |0〉〈0| and |1〉〈1| (off-diagonal elements
|1〉〈0| and |0〉〈1|) of the input state contribute only to the
diagonal elements |k〉〈k| (off-diagonal elements |k + 1〉〈k| and
|k〉〈k + 1|) in the output state.

The formulas derived above enable us to describe CV
teleportation of qubits fully in terms of density matrices. For
the single-rail qubit in Eq. (9), the teleportation process is then
expressed by

|ψ〉s〈ψ | = |α|2|0〉〈0| + α∗β|1〉〈0| + αβ∗|0〉〈1|
+ |β|2|1〉〈1|

⇒ T̂ (|ψ〉s〈ψ |) = |α|2T̂ 00 + α∗βT̂ 10 + αβ∗T̂ 01 + |β|2T̂ 11,

(25)

defining T̂ mn ≡ T̂ (|m〉〈n|). In the case of the dual-rail
qubit in Eq. (10), each mode is transmitted through

a teleportation channel independently. Thus, we extend
the single-mode transition operator to a two-mode tran-
sition operator, T̂XY(ρ̂XY), for any two-mode state ρ̂XY =∑

j,k,m,n ρjkmn|j 〉X〈k| ⊗ |m〉Y〈n| as

T̂XY(ρ̂XY) ≡
∑

j,k,m,n

ρjkmnT̂X(|j 〉X〈k|) ⊗ T̂Y(|m〉Y〈n|). (26)

In general, the two teleportation channels, T̂X, and T̂Y are
characterized by different parameters (τ,g) according to
Eq. (4). Thus, teleportation of a dual-rail qubit can be described
by

|ψ〉d〈ψ |
= |α|2|0〉X〈0| ⊗ |1〉Y〈1| + α∗β|1〉X〈0| ⊗ |0〉Y〈1|

+αβ∗|0〉X〈1| ⊗ |1〉Y〈0| + |β|2|1〉X〈1| ⊗ |0〉Y〈0|
⇒ T̂XY(|ψ〉d〈ψ |)

= |α|2T̂ 00
X ⊗ T̂ 11

Y + α∗βT̂ 10
X ⊗ T̂ 01

Y + αβ∗T̂ 01
X ⊗ T̂ 10

Y

+ |β|2T̂ 11
X ⊗ T̂ 00

Y , (27)

where T̂ mn
i ≡ T̂i(|m〉i〈n|) (i =X, Y). Equations (25) and (27),

together with the coefficients given by Eqs. (22)–(24), give
the output density matrices as functions of the squeezing
parameter r , loss l, and gain g, and hence gain tuning for
teleporting DV states can be investigated in detail from these
results.

One advantage of our formalism compared to the transfer-
operator formalism [15,16] is that an actual, realistic experi-
ment can be more accurately modeled by taking into account
the impurity of squeezing. In addition, our formalism is appli-
cable to channels more complex than a simple teleportation
channel by replacing the parameters (τ,g) for each T̂ by
(τtot,gtot) [namely, Eq. (4) is replaced by Eq. (8)]. It can
also be straightforwardly extended to the multiqubit situation
where all or some parts of the qubits are teleported. Possible
applications are various hybrid teleportation experiments, such
as CV teleportation of a multiqubit system, sequential CV
teleportation of qubits, and entanglement swapping [29] using
a DV entangled state and CV teleportation.

IV. TELEPORTATION OF DUAL-RAIL QUBITS

CV teleportation of a dual-rail qubit is one of the most
important and fundamental examples of optical hybrid quan-
tum information processing, as experimentally demonstrated
recently [8]. The ideal situation of this experiment has
already been modeled by the transfer-operator formalism on
the assumption that the input qubit state and the resource
squeezed states are perfectly pure [15,16]. This assumption
is, however, not true in actual experiments. Here we model
this teleportation experiment more accurately by taking into
account the impurity of the input state as well as the squeezed
states (all measurement inefficiencies can be incorporated into
the initial losses as shown in Appendix B). Since fidelity is used
as a figure of merit in Ref. [8], we investigate the optimal gain
to obtain the maximum fidelity under various experimental
conditions. The theoretical results here are shown to be in
good agreement with the experimental results in Ref. [8].

We start by describing the output density matrix of
teleportation by using transition operators. The experimental
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dual-rail qubit input can be modeled by a mixed state of the
pure qubit in Eq. (10) and a two-mode vacuum state as

ρ̂in = η|ψ〉d〈ψ | + (1 − η)|0〉X〈0| ⊗ |0〉Y〈0|, (28)

where η is the fraction of the qubit (0 � η � 1). As mentioned
in Sec. III, CV teleportation of this qubit requires two parallel
teleportation channels, which have different parameters (τ,g)
in general. However, we may assume the same (τ,g) for the
two teleportation channels when both rails of the qubit [30]
are teleported by the same CV teleporter, as in Ref. [8]. This
assumption greatly simplifies the description of the experiment
in the following two aspects. First, for an arbitrary qubit |ψ〉d,
its density matrix ρ̂in in Eq. (28) can be decomposed into a
tensor product,

Û ρ̂inÛ
† = [η|1〉X〈1| + (1 − η)|0〉X〈0|] ⊗ |0〉Y〈0|, (29)

via a beam-splitter transformation defined by a unitary operator
Û satisfying Û â

†
XÛ † = β∗â†

X − αâ
†
Y and Û â

†
YÛ † = α∗â†

X +
βâ

†
Y (â†

i denotes a creation operator of mode i). Second, when
the teleportation channels for both rails have the same (τ,g),
the basis transformation ρ̂XY → Û ρ̂XYÛ † and the teleportation
map ρ̂XY → T̂XY(ρ̂XY) of Eq. (27) commute for any two-mode
state ρ̂XY:

T̂XY(Û ρ̂XYÛ †) = Û [T̂XY(ρ̂XY)]Û †. (30)

This is proven in Appendix A. These two properties together
mean that the density matrix of the teleported state ρ̂out =
T̂XY(ρ̂in) satisfies

Û ρ̂outÛ
† = T̂XY(Û ρ̂inÛ

†)

= [
ηT̂ 11

X + (1 − η)T̂ 00
X

] ⊗ T̂ 00
Y . (31)

Equations (29) and (31) indicate that, after the transformation
Û , dual-rail qubit teleportation can be interpreted as parallel
teleportation of a single photon with loss (mode X) and a
vacuum (mode Y). From Eqs. (22) and (24), it is shown that
Û ρ̂outÛ

† in Eq. (31) has only diagonal density matrix elements.
The matrix elements of ρ̂out can be obtained by the inverse
transformation Û † of Eq. (31). Since Û † preserves the total
photon number, i.e., X〈j |Y〈k|Û †|m〉X|n〉Y = 0 for j + k �=
m + n, ρ̂out has nonzero |j 〉X|k〉Y〈m|X〈n|Y elements only when
j + k = m + n. As a result, the element of ρ̂out belongs to ei-
ther the vacuum subspace spanned by {|0〉X|0〉Y}, or the single-
photon subspace spanned by {|0〉X|1〉Y,|1〉X|0〉Y}, or the two-
photon subspace spanned by {|0〉X|2〉Y,|1〉X|1〉Y,|2〉X|0〉Y},
and so on. Here, the single-photon subspace is the original
qubit subspace where the quantum information is encoded.

Now the fidelity between ρ̂in and ρ̂out can be calculated to
assess the performance of teleportation. Two types of fidelity
are introduced in Ref. [8]. One is the overall transfer fidelity
Fstate, which is directly calculated from ρ̂in and ρ̂out as [31]

Fstate = [Tr (
√√

ρ̂inρ̂out

√
ρ̂in)]2. (32)

This fidelity reflects the entire two-mode Hilbert space,
taking into account the vacuum and multiphoton contribu
tions. Thus, Fstate describes the performance of a “determinis-
tic” teleportation that does not preselect or postselect specific
parts of the quantum states. Since the fidelity between ρ̂in and
ρ̂out is equal to the fidelity between Û ρ̂inÛ

† and Û ρ̂outÛ
† [31],

it is straightforwardly calculated from Eqs. (29) and (31) as

Fstate = T00→00[
√

η(ηT11→11 + (1 − η)T00→11)

+
√

(1 − η)(ηT11→00 + (1 − η)T00→00)]2, (33)

with coefficients T given by Eqs. (22) and (24). The other
fidelity in Ref. [8] is an indicator to assess the qubit
components alone,

Fqubit = d〈ψ |ρ̂qubit
out |ψ〉d, (34)

where |ψ〉d is the pure input qubit in Eq. (10) and ρ̂
qubit
out

is the matrix obtained by extracting and renormalizing the
qubit subspace spanned by {|0〉X|1〉Y,|1〉X|0〉Y}. Fqubit can be
calculated as the fidelity between Û |ψ〉d〈ψ |Û † = |1〉X〈1| ⊗
|0〉Y〈0| and Û ρ̂

qubit
out Û †. The latter is obtained by extracting

the terms with one photon in total from Û ρ̂outÛ
† and then

renormalizing. Thus we obtain

Fqubit = Ptrans

Ptrans + Pflip
, (35)

where

Ptrans = T00→00[ηT11→11 + (1 − η)T00→11], (36)

Pflip = T00→11[ηT11→00 + (1 − η)T00→00] (37)

are the probabilities that the photon number is trans-
ferred correctly (|1〉X|0〉Y → |1〉X|0〉Y) or flipped (|1〉X|0〉Y →
|0〉X|1〉Y). The sum Pqubit = Ptrans + Pflip gives the probability
of obtaining the qubit at the output. Note that both fidelities,
Fstate in Eq. (33) and Fqubit in Eq. (35), are independent of the
qubit coefficients α and β in Eq. (10). This indicates that the
optimal gain is also independent of the initial qubit state.

Now we discuss the dependence of fidelities Fstate and
Fqubit on the four experimental parameters (η,r,l,g) using
Eqs. (33) and (35). Here 1 − η and l are experimental losses,
constant for each experimental setup. Therefore only the
g and r dependences of the fidelities are plotted for fixed
(η,l) values (e.g., in Ref. [8], η ∼ 0.7 and l ∼ 0.2 are given,
while r ∈ {0.71,1.01,1.56} and g ∈ {0.5,0.63,0.79,1.0} are
varied). First, the g dependence of Fstate at r = 1.0 is plotted
for various (η,l) values in Fig. 2(a). Here the parameters
(η,r,l) = (0.7,1.0,0.2) reflect one of the experimental settings
in Ref. [8]. It can be seen that gain tuning greatly improves the
Fstate from the unit-gain regime at a certain gain below unity.
However, the optimal gain g

opt
state to give the maximum Fstate

differs according to (η,l). Note that generally Fstate is higher for
more mixed input states, leading to a higher Fstate for η = 0.7
than η = 1.0. The r dependence of g

opt
state and the maximum

fidelity F max
state at this gain are shown in Figs. 2(b) and 2(c) for

various (η,l) values. For l = 0, we can see F max
state → 1 in the

limit of r → ∞, but F max
state does not reach unity for l > 0. More

interestingly, in the case of l > 0 and η < 1, there is an optimal
squeezing level r

opt
state which gives the maximum F max

state [e.g.,
r

opt
state = 0.91 for (η,l) = (0.7,0.2)]. This result agrees with the

fact that the highest value of F max
state was obtained at r = 1.01

among {0.71,1.01,1.56} in the experiment in Ref. [8].
Next we examine Fqubit in the same way. Figure 2(d) shows

the g dependence of Fqubit at r = 1.0 for various (η,l) values.
It is notable that Fqubit reaches unity for certain conditions
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FIG. 2. (Color online) Simulation results of CV teleportation of a dual-rail qubit. (a) g dependence of Fstate at r = 1.0. (b) r dependence of
g

opt
state. (c) r dependence of F max

state . (d) g dependence of Fqubit at r = 1.0. (e) r dependence of g
opt
qubit at η = 0.7. (f) r dependence of F max

qubit and Pqubit at

η = 0.7. (g) Experimental ρ̂out in Ref. [30]. (h) Theoretical ρ̂out in Eq. (31) for (α,β,η1,η2,r,l,g) = (1/
√

2, − i/
√

2,0.69,0.06,1.01,0.2,0.79).

even though the squeezing parameter r is finite. One condition
is g = gatt(= 0.76) and η > 0, when the teleportation is
equivalent to a pure attenuation channel. Here the teleportation
only increases the vacuum component of the initial qubit state
of Eq. (28), which leads to T00→11 = 0 and thus Pflip = 0 in
Eq. (37). The other condition is g = gamp(=1.31) and η = 1,
when the initial pure qubit is amplified and transformed into
the mixture of a qubit and more-than-one photon states. This
condition also gives Pflip = 0 since T11→00 = 0 and 1 − η = 0
in Eq. (37). Under most of the realistic conditions of η < 1
and l > 0, the peak at g = gamp vanishes and Fqubit is maximal
when the gain is close to gatt. For l > 0, the maximum Fqubit is
limited below unity due to the inevitable thermalization effect
of teleportation, as mentioned in Sec. III. Thus, the loss of the
resource EPR state limits the experimental Fqubit to, at best,
0.90 in Ref. [8]. The r dependence of the optimal gain g

opt
qubit,

the maximum fidelity F max
qubit, and the probability Pqubit at this

gain are plotted in Figs. 2(e) and 2(f) (we fixed η = 0.70). In
Fig. 2(e), gopt

qubit = gatt for l = 0 (for any 0 < η < 1). The finite
loss of l = 0.2 leads to only a small discrepancy between g

opt
qubit

and tanh r; for l = 0.2, g
opt
qubit is closer to tanh r for smaller

η. Thus, in most cases, choosing g = tanh r regardless of

(η,l) is nearly optimal for faithful qubit information transfer.
Figure 2(f) shows that Pqubit increases with increasing r , but
the increment of F max

qubit is small. F max
qubit is mainly limited by l

(not by r), which defines the minimal thermalization effect of
teleportation.

Finally, we directly compare the theoretical ρ̂out in Eq. (31)
and the experimental ρ̂out in Ref. [8] for the purpose of
demonstrating the validity of our model. One of the experimen-
tal results along with its theoretically calculated simulation
result for the same parameters (α,β,η,r,l,g) is illustrated
in Figs. 2(g) and 2(h); they are in good agreement. The
fidelities between theoretical and experimental ρ̂out for 24
conditions of (α,β,η,r,l,g) in Ref. [8] are calculated to give
an average value of 0.98 ± 0.01. This value is calculated
using only |j,k〉〈m,n| elements for j + k = m + n on the
assumption that the nonzero |j,k〉〈m,n| elements for j + k �=
m + n in the experimental ρ̂out are attributed to the imperfect
measurement scheme [8] (otherwise the fidelity drops to
0.92 ± 0.04). The effects of two-photon input states of around
6% are also taken into account (see Appendix C). This high
fidelity demonstrates that our theory accurately models the
experiment.
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V. TELEPORTATION OF DV ENTANGLEMENT

In a typical teleportation experiment, a specific set of
quantum states, which is known to the experimentalists, is
prepared and used as test states for the teleporter. However,
the genuine quantum nature of teleportation lies in the fact
that it can teleport arbitrary unknown quantum states. This
quantum nature can manifest itself directly when one half of
an entangled pair is teleported. In this case, for example, a
qubit that is to be teleported is indeed in a completely random
state on its own while being maximally entangled with another
qubit. The entanglement is then transferred via teleportation,
thus revealing the quantum nature of teleportation. Such tele-
portation of entanglement, usually referred to as entanglement
swapping, has been proposed and experimentally realized sep-
arately in DV [26,27,29] and CV [32–35] optical systems. Here
an interesting question arises for our hybrid system: Can CV
teleportation transfer DV entanglement? The original proposal
of this hybrid entanglement swapping was made in Ref. [9]
as CV teleportation of polarization entanglement between
photons. The condition for violating the Clauser-Horne-type
inequality by photon-counting measurement was discussed,
but its experimental demonstration has not been reported yet.

Here we propose another type of hybrid entanglement-
swapping experiment in a readily implementable form. The
main difference from the original proposal in Ref. [9] is
that the polarization-entangled photons and photon-counting
measurements are replaced by a single photon split at a
beam splitter and homodyne measurements, respectively. The
demonstration of our proposal will give distinct proof of the
fact that CV teleportation operates nonclassically on the DV
subspace of {|0〉,|1〉}. In addition, this hybrid scheme allows
for a more efficient transfer of DV entanglement than previous
DV schemes [26,27,29] and, thus, has applications in practical
quantum communication [36,37].

Our proposal is illustrated in Fig. 3. At the first stage,
a heralded single photon is generated based on the method
in Refs. [30] and [38]. The photon incident on a 50:50
beam splitter yields maximally entangled single-rail qubits
|ψ〉XY = (|0〉X|1〉Y + |1〉X|0〉Y)/

√
2. The qubit of mode Y is

then teleported to mode Z via the CV teleporter in Ref. [8]. The
two-mode density matrix of modes X and Z can be obtained
by the homodyne-tomography method in Ref. [39]. Finally,
entanglement in the final state can be assessed by a violation
of the positivity after partial transposition [40]. Below we
model the proposed experiment in the transition-operator

Tomography

ux

EPR
source

X Y

Z
vp g

lr,

η1

CV teleportation

FIG. 3. (Color online) Schematic of hybrid entanglement swap-
ping.

formalism and derive a sufficient experimental condition to
observe the entanglement after teleportation. We also deduce
the optimal gain to maximize the transferred entanglement,
which is quantified by the logarithmic negativity (LN) [41].

Experimentally, the initial single-photon state becomes a
state mixed with vacuum corresponding to a loss fraction of
1 − η. The entangled state ρ̂XY after the 50:50 beam splitter
can thus be modeled by

ρ̂XY = (1 − η)|0〉X〈0| ⊗ |0〉Y〈0| + η|ψ〉XY〈ψ |. (38)

CV teleportation from mode Y to mode Z replaces |m〉Y〈n|
in Eq. (38) by its corresponding transition operator T̂ mn

Z ≡
T̂Z(|m〉Y〈n|) (m,n = 0,1). The final density matrix is thus
written as

ρ̂XZ = (1 − η)|0〉X〈0| ⊗ T̂ 00
Z + η

2

(|1〉X〈1| ⊗ T̂ 00
Z + |1〉X〈0|

⊗T̂ 01
Z + |0〉X〈1| ⊗ T̂ 10

Z + |0〉X〈0| ⊗ T̂ 11
Z

)
. (39)

The success of entanglement swapping can be confirmed by
witnessing entanglement in ρ̂XZ. It is known that the positivity
of the partial transposition (PPT) of ρ̂XZ (namely, the partial
transposition for just one subsystem, X or Z) is a necessary
condition for ρ̂XZ to be separable [40]. The partial transposition
of Eq. (39) for mode X is

ρ̂
TX
XZ = (1 − η)|0〉X〈0| ⊗ T̂ 00

Z + η

2

(|1〉X〈1| ⊗ T̂ 00
Z + |0〉X〈1|

⊗ T̂ 01
Z + |1〉X〈0| ⊗ T̂ 10

Z + |0〉X〈0| ⊗ T̂ 11
Z

)

=
∞∑

k=−1

ρ̂k, (40)

where ρ̂k (k � −1) is defined as

ρ̂k = ak|0〉X〈0| ⊗ |k〉Z〈k| + bk|0〉X〈1| ⊗ |k〉Z〈k + 1|
+ bk|1〉X〈0| ⊗ |k + 1〉Z〈k| + ck|1〉X〈1|
⊗ |k + 1〉Z〈k + 1|, (41)

with coefficients ak,bk,ck � 0, given by

ak = (1 − η)T00→kk + η

2
T11→kk (k � 0), 0(k = −1),

bk = η

2
T10→k+1 k (k � 0), 0(k = −1), (42)

ck = η

2
T00→k+1 k+1 (k � −1).

Here ρ̂mρ̂n = Ô can be proven for all m and n (m,n � −1,
m �= n). This means that the set of eigenvalues of ρ̂

TX
XZ is equiv-

alent to the sum of sets of eigenvalues of each ρ̂k (k � −1).
When at least one of ρ̂k has a negative eigenvalue, ρ̂

TX
XZ fails to

be positive, in which case we know that ρ̂XZ is entangled. Since
ρ̂−1 is always positive, the sign of the following eigenvalues
λ±

k of each ρ̂k (k � 0) determines the positivity,

λ±
k =

ak + ck ±
√

(ak − ck)2 + 4b2
k

2
. (43)

Since λ+
k > 0, we focus on the condition λ−

k < 0. From
Eqs. (22)–(24) and (42), this condition can be calculated as

3η − 2

2 − η
> 2τ − 1

g2
, (44)
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with τ defined by Eq. (5). This is the necessary and sufficient
condition for ρ̂k to have a negative eigenvalue. Since Eq. (44)
is independent of k, this inequality is also the necessary and
sufficient condition for ρ̂

TX
XZ to have at least one negative

eigenvalue. In other words, when the experimental setting
(η,r,l,g) satisfies Eq. (44), entanglement in ρ̂XZ can be
verified by a violation of the PPT criterion. When g can be
chosen arbitrarily, Eq. (44) is most easily satisfied by choosing
g

opt
PPT = tanh r , when the right-hand side takes its minimum

value 2l − 1. At this gain, Eq. (44) is reduced to

η

2 − η
> l, (45)

independent of the parameter r . Therefore η and l are the
critical parameters in this experiment. As long as η and l

satisfy Eq. (45), PPT of ρ̂XZ can be violated for any nonzero
r at the optimal gain g

opt
PPT = tanh r(= gatt). The range of (r,g)

satisfying Eq. (44) is plotted in Fig. 4(a) for various (η,l)
values. For η = 1, Eq. (44) gives

cosh r − 1

sinh r
< g <

cosh r + 1

sinh r
, (46)

and the range does not depend on l. For η < 1, the violation
range gets smaller with an increasing l and, finally, vanishes
when Eq. (45) is violated.

In addition, the degree of entanglement in ρ̂XZ can be
assessed by the logarithmic negativity (LN), given by [41]

ELN(ρ̂XZ) ≡ log2

∥∥ρ̂
TX
XZ

∥∥
= log2

[
1 +

∑
k

(|λ−
k | − λ−

k )

]
, (47)

where ||ρ̂|| = Tr (ρ̂†ρ̂)1/2. This quantifies the degree to which
ρ̂

TX
XZ fails to be positive; the state is entangled when ELN(ρ̂XZ) >

0, and a maximally entangled state gives ELN(|ψ〉XY〈ψ |) = 1.
The value of ELN(ρ̂XZ) can be directly calculated by inserting
λ−

k of Eq. (43) into Eq. (47). Figures 4(b) and 4(c) each show
the r dependence of the optimal gain g

opt
LN that maximizes ELN

and the maximum value Emax
LN for various (η,l) values. g

opt
LN

is always larger than g
opt
PPT = tanh r . By increasing r , Emax

LN
monotonically increases and approaches the LN of the initial
state, but the upper bound is limited by loss l.

Finally, the viability of this experiment is examined based
on current technologies. When l = 0.2 is assumed as reported
in Ref. [8], Eq. (45) requires an input efficiency of η >

1/3. Since heralded single-photon sources with efficiencies
up to η ∼ 0.8 have been reported [42], the verification
of entanglement is possible. As an example, for (η,r,l) =
(0.8,1.0,0.2), the maximum LN of Emax

LN (ρ̂XZ) = 0.30 is
obtained at g

opt
LN = 0.90 after teleportation for an initial state

with LN ELN(ρ̂XZ) = 0.70. The theoretical density matrices
ρ̂XY and ρ̂XZ under this condition are illustrated in Figs. 4(d)
and 4(e). It can be seen that the original DV entanglement,
which manifests itself as four elements in the subspace
{|0〉X|1〉Y,|1〉X|0〉Y}, is transformed into the other elements
in the subspace {|0〉X|k + 1〉Z,|1〉X|k〉Z} (k � 0) due to the
thermalization effect on mode Y in teleportation.

VI. CONCLUSION

We have developed a general formalism to describe the
transformation of DV states by a CV teleportation chan-
nel. This formalism can be used to model various hybrid
teleportation experiments and investigate the optimal gain
tuning for a given figure of merit. The key element of our
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FIG. 4. (Color online) Simulation results of entanglement swapping. (a) Area of (r,g) where PPT of ρ̂XZ is violated is shaded (green)
[Eq. (44)]. (b) r dependence of g

opt
LN. (c) r dependence of E

opt
LN(ρ̂XZ). The LN of the initial state is Emax

LN (ρ̂XY) = 1 for η = 1.0 and Emax
LN (ρ̂XY) =

0.548 for 0.7. (d) Theoretical ρ̂XY in Eq. (38) for η = 0.8 (real part). (e) Theoretical ρ̂XZ in Eq. (39) for (η,r,l,g) = (0.8,1.0,0.2,0.90) (real
part). Note that there is no imaginary component for either ρ̂XY or ρ̂XZ.
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formalism is a transition operator T̂ , which describes how each
density matrix element is transformed by the CV teleportation
channel. This operator includes two parameters (τ,g) that
characterize the channel properties. By appropriately choosing
(τ,g), we can describe experimental imperfections such as
loss on the input state and impurity of squeezing, and we can
also analyze more complex teleportation channels composed
of consecutive CV teleportation, pure attenuation, and pure
amplification.

We have applied our formalism to CV teleportation of a
dual-rail qubit and discussed the optimal gain to obtain the
maximum fidelity under various experimental conditions. The
validity of our model is confirmed by the good agreement
between our theoretical prediction and the actual experimental
results in Ref. [8]. We have also proposed and modeled CV
teleportation of DV entanglement in the form of a split single
photon. It has been proven that, provided that the efficiency of
the input qubits and the loss on the resource squeezing satisfy
a certain condition, DV entanglement can be teleported for
any nonzero squeezing level by optimally tuning the gain.
This experiment can thus be readily realized with current
technology.
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APPENDIX A: COMMUTATION OF BEAM-SPLITTER
TRANSFORMATION AND TELEPORTATION PROCESS

Here we prove Eq. (30) by deriving the Wigner functions
corresponding to the density matrices of both the left- and
the right-hand sides of Eq. (30). For this purpose we define
the Wigner function of ρ̂XY as WXY(ξX,ξY). On the right-hand
side of Eq. (30), T̂XY(·) is first applied to the input state. By
the definition of T̂XY and Eq. (4), this process transforms the
Wigner function into

1

g4

∫∫
dξ ′′

Xdξ ′′
YWXY(ξ ′′

X,ξ ′′
Y)Gτ

(
ξX

g
− ξ ′′

X

)
Gτ

(
ξY

g
− ξ ′′

Y

)
.

(A1)

The beam-splitter transformation Û is then applied (Û â
†
XÛ † =

β∗â†
X − αâ

†
Y, Û â

†
YÛ † = α∗â†

X + βâ
†
Y). This process trans-

forms the arguments ξX and ξY in Eq. (A1) as follows:

1

g4

∫∫
dξ ′′

Xdξ ′′
YWXY(ξ ′′

X,ξ ′′
Y)Gτ

(
β∗ξX − αξY

g
− ξ ′′

X

)

×Gτ

(
α∗ξX + βξY

g
− ξ ′′

Y

)
. (A2)

On the left-hand side of Eq. (30), the input state is first trans-
formed into WXY(β∗ξX − αξY,α∗ξX + βξY) by the operator

Û , which is then transformed into

1

g4

∫∫
dξ ′

Xdξ ′
YWXY(β∗ξ ′

X − αξ ′
Y,α∗ξ ′

X + βξ ′
Y)

×Gτ

(
ξX

g
− ξ ′

X

)
Gτ

(
ξY

g
− ξ ′

Y

)
(A3)

by the teleportation process. Equation (A3) becomes equal to
Eq. (A2) upon replacing the integration variable (ξ ′

X,ξ ′
Y) in

Eq. (A3) by (ξ ′′
X,ξ ′′

Y) = (β∗ξ ′
X − αξ ′

Y,α∗ξ ′
X + βξ ′

Y). Thus, the
Wigner functions of the left- and right-hand sides in Eq. (30)
are equivalent. This fact proves Eq. (30).

APPENDIX B: EFFECT OF
MEASUREMENT INEFFICIENCIES

Here we show how to take into account the measurement
inefficiencies at the detectors for modes u, v, and output in
Fig. 1 when they are no longer negligible. In conclusion, these
measurement inefficiencies can be incorporated into the input
efficiency (η) and the loss in the EPR state (l) on the assumption
that all these detector efficiencies are the same (ηd). We use the
following lemma to prove this fact: symmetric losses in two
modes after a beam splitter are equivalent to the same amount
of symmetric losses in two modes before their combination.
First, the measurement loss 1 − ηd in modes u and v can be
incorporated into the input loss 1 − η and the loss in mode A.
Next, the measurement loss 1 − ηd in the output state adds loss
to mode B as well as to the amplitude of displacement. The
losses in modes A and B can be incorporated into the initial
loss l. The loss in the displacement amplitude attenuates the
effective feedforward gain from g to

√
ηdg. In our analysis

in Secs. IV and V, all these measurement inefficiencies are
included in η and l. The gain reduction is neglected, but this
effect only changes the scales of the gain axes in Figs. 2
and 4.

APPENDIX C: EFFECT OF TWO-PHOTON INPUT STATE

In the simulation in Sec. IV, we have assumed that the
initial dual-rail qubit has no multiphoton terms. However,
the experimental qubit state usually has nonzero mult-photon
terms as in Ref. [8]. The input state in Ref. [8] has about 6%
two-photon terms in the subspace of {|0,2〉,|1,1〉,|2,0〉}, which
cannot be neglected. This effect can be taken into account by
the following method.

Extending Eq. (29), we can assume that the input state with
two-photon terms is modeled by

ρ̂in = Û †(ρ̂X ⊗ |0〉Y〈0|)Û ,
(C1)

ρ̂X = (1 − η1 − η2)|0〉X〈0| + η1|1〉X〈1| + η2|2〉X〈2|.

By appropriately choosing η1 and η2, this ρ̂in simulates well
the experimental input state, yielding an average fidelity
of 0.98 ± 0.01 for the six input states in Ref. [8]. In the
transition-operator formalism, the teleported state for this ρ̂in is
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given by

ρ̂out = Û †{[η2T̂
22

X + η1T̂
11

X + (1 − η1 − η2)T̂ 00
X

] ⊗ T̂ 00
Y

}
Û ,

(C2)

where T̂ 22
X ≡ T̂X(|2〉X〈2|). In order to calculate each element of

ρ̂out, the expression of the coefficient T22→jk of T̂ 22
X is needed

in addition to Eqs. (22) and (24). This can be calculated from

Eqs. (4), (5), and (12) as

T22→jk = 2(λ − 1)k−2

(λ + 1)k+3
[(λ − 2g2 + 1)2(λ − 1)2

+ 8kg2(λ2 − 2g2λ + g2 − 1) + 8k2g4]δj,k. (C3)

Using the results above, the two-photon effect of the input state
can be considered for the derivation of the density matrices
(ρ̂in, ρ̂out) and the fidelity (Fstate, Fqubit).
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