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Nonlocal quantum gate on quantum continuous variables with minimal resources
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2Department of Optics, Palacký University, 17. Listopadu 1192/12, 771 46 Olomouc, Czech Republic
(Received 14 March 2014; published 8 July 2014)

We experimentally demonstrate, with an all-optical setup, a nonlocal deterministic quantum nondemolition
interaction gate applicable to quantum states at nodes separated by a physical distance and connected by classical
communication channels. The gate implementation, based on entangled states shared in advance, local operations,
and classical communication, runs completely in parallel fashion at both of the local nodes, requiring minimum
resources. The nondemolition character of the gate up to the local unitary squeezing is verified by the analysis using
several coherent states. A genuine quantum nature of the gate is confirmed by the capability of deterministically
producing an entangled state at the output from two separable input states. The all-optical nonlocal gate operation
can be potentially incorporated into distributed quantum computing with atomic or solid-state systems as a
cross-processor unitary operation.
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I. INTRODUCTION

A quantum computer is a powerful machine, capable of
solving several important problems much faster than existing
computers [1,2]. Currently, atomic or solid-state quantum
systems are candidates for feasible quantum computers, while
propagating light in optical fibers is ideal for communication
between quantum processors. Small-scale quantum informa-
tion processing has already been realized with various physical
systems, such as superconducting qubits [3,4], trapped ions [5],
electron spins in quantum dots [6], photonic qubits [7,8],
and optical modes [9–11]. Furthermore, as for the creation
of multimode entanglement which can be exploited as a
resource in quantum computation and quantum networks,
an ultra-large-scale entangled state with more than 10 000
entangled modes was recently reported [12].

Towards a physical implementation of a quantum computer,
one approach is to make a network by connecting many
quantum processors of moderate size. If local quantum opera-
tions at the nodes are combined with quantum communication
between them, any quantum processing can be decomposed
to a serial combination of local operations. In this case,
the processors implement their local operations sequentially
in time and use quantum channels or quantum teleporters
[Fig. 1(a)] [13,14] to transmit quantum states among them.
Quantum teleportation is advantageous compared to direct
transfer of quantum states via quantum channels because, in the
teleportation scenario, the teleportation fidelity can be brought
close to unity by entanglement distillation [15] even when the
connecting channel is lossy. In principle, a nonlocal quantum
gate of an interaction operation ÊAB between two nodes A

and B is achievable with a sequence of three steps [Fig. 1(b)]:
first teleporting a state from node A to node B, then locally
coupling it with the other state present at node B by a local
gate ÊAB , and finally teleporting one outcome from that gate
operation back to node A [16].
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Here we explore the possibility of reducing the above
sequential and asymmetric three-step implementation to a
parallel single-step implementation based on local operations
and classical communication (LOCC) [Fig. 1(c)]. LOCC can
never create an entangling gate; however, if LOCC is supported
by entangled resource states shared in advance, this no-go
theorem is irrelevant and a nonlocal entangling gate for
arbitrary states may be implemented at the cost of consumption
of the resource states. Indeed, the reduction is known to be
possible for the most fundamental, controlled-NOT (CNOT) gate
for qubit systems [17–19] and the quantum nondemolition
(QND) gate for continuous variable (CV) systems [20,21].
The resulting speed-up means less decoherence, which is
the main obstacle of quantum processing. Another advantage
may be a symmetry of the parallel processing, allowing for
balanced use of the processors. In practice, the resource
entangled states shared in advance among nodes will be stored
in quantum memories, but they can be retrieved at the time
they are required and thus the subsequent implementation of
the nonlocal gate itself can be deterministic within all-optical
architecture, which is feasible with the current technology.

In this paper, we experimentally demonstrate the parallel
implementation of a nonlocal QND gate within all-optical
architecture, consuming minimal resources as schematized
in Fig. 1(c), according to the proposal in Ref. [21]. We
demonstrate a fundamental input-output relation which is
characteristic of a QND gate. Furthermore, the nonlocal
entangling nature of the gate can be verified by looking at the
entanglement of the initially separable output states. Together
with the previous test of CV quantum memories [22], our
test opens a way towards the spatially distributed parallel CV
processors.

II. THEORY

A. Nonlocal CNOT and QND gate

Distributed quantum computing was previously discussed
for qubits [23,24]. It divides tasks into subroutines and
executes them in parallel at several nodes of the quantum
processor network. A parallel nonlocal gate is a nonlocal
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FIG. 1. (Color online) Abstract illustrations of some nonlocal
gates. (a) Quantum teleportation from Alice to Bob. (b) Nonlocal
entangling gate with sequential scheme by means of two quantum
teleporters and one local entangling gate. (c) Optimal parallel
nonlocal entangling gate. meas.: measurement; local U.: local unitary
operation; EPR: entanglement resource; ÊAB : entangling operation
for two input states.

extension of the teleportation of the local gate [25]. What are
the minimal quantum resources required for implementation
of a basic all-optical nonlocal gate? For qubits, the basic
nonlocal CNOT gate (ĈAB |a〉A|b〉B = |a〉A|a + b mod 2〉B ,
a,b ∈ {0,1}) can be principally implemented by one ebit of
entanglement that is preshared between the nodes, two parallel
local CNOT gates, two parallel local projective measurements,
and two-way one-bit classical communication [17,18]. The
practical application of the gates for distributed quantum
computing has been discussed in Ref. [26]. Recently, the
parallel implementation of the nonlocal CNOT gate has been
discussed in detail [19]. The heralded but still probabilistic
all-optical nonlocal CNOT gates in the parallel configuration
were already implemented a long time ago [27,28].

For CV systems of quantum oscillators, an equivalent of the
basic CNOT gate is a QND gate (�̂AB |a〉A|b〉B = |a〉A|a + b〉B ,
a,b ∈ R) [10,20,21,29], which has been used as a main tool
to make interactions in CV quantum information processing.
Furthermore, the nondemolition measurement based on a local
QND gate is a very important topic of quantum physics [30,31].

Advantageously, QND interaction naturally appears between
light and atomic memories [22], and therefore the QND gate
is a very good candidate for a constitutive gate in CV quantum
processors. To test the principles of the basic QND gate, an all-
optical realization of the local QND interaction for traveling
beams has been constructed [29].

The nonlocal realization of the QND gate (ÊAB = �̂AB)
in the parallel configuration and with minimal resources was
actually suggested a long time ago [20]. For that nonlocal QND
gate, the sufficient requirements are, in analogy with the case
of the qubit CNOT gate, an Einstein-Podolsky-Rosen (EPR)
state that is preshared between the nodes, two parallel local
QND gates, two parallel homodyne projective measurements,
and two parallel two-way classical communication of a real
number [20]. Later, the parallel configuration of the nonlocal
QND gate was theoretically extended to an all-optical realiza-
tion where local operations are based on local beam-splitter
gates instead of local QND gates [21], which is exactly what we
experimentally demonstrate here. In this case, the QND gate is
implemented up to a priori known local squeezing operations
(ÊAB = Ŝ

†
AŜB�̂AB , where Ŝk is a local squeezing operation,

as explained later), which can be canceled by another local
squeezing gate as already experimentally tested on traveling
optical beams [9,32] or possibly implemented directly in
atomic memories [33]. Note that the above implementations
are not only composed of a smaller number of steps, but are also
much less resource consuming compared to the teleportation-
based sequential strategy [Fig. 1(b)], which consumes two EPR
states and requires sequentially doubled two-way classical
communication.

B. Nonlocal QND gate with minimal resources

We consider the scenario where two manipulators Alice
and Bob, being separated by a large distance, would like to
simultaneously apply a nonlocal QND sum gate onto their
states by means of LOCC, supported by preprepared resource
entangled states. We will consider the QND type of nonlocal
deterministic sum gate described by the unitary transformation

�̂AB = e−2ix̂Ap̂B , (1)

even though the considerations can be naturally extended to
other nonlocal gates. Here x̂j and p̂j , where j = A,B, denote
the generalized position and momentum quadrature operators,
which satisfy the commutation relation [x̂j ,p̂k] = iδjk/2 with
� = 1/2, where δjk is the Kronecker delta.

In Refs. [20,21], it was shown that one preshared maximally
entangled state (ideal EPR state) and one ideal classical
channel in each direction (two channels in total) are sufficient
resources for the ideal deterministic nonlocal QND sum gate
implemented in the parallel way for arbitrary input states
owned by Alice and Bob. By the classical channel, we mean
sending a classical real number s ∈ R over a distance. Is
the maximally entangled state necessary to implement the
nonlocal QND sum gate in the parallel way on both sides for all
of the possible input states? The following answer is based on
the well-known fact that the amount of entanglement cannot
be increased by the deterministic LOCC operations [34].
The ideal EPR states are therefore necessary to be shared
between Alice and Bob, since the QND sum gate is capable
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of creating an entangled state with an arbitrary large amount
of entanglement from two pure separable states. For instance,
when the initial quantum state owned by Alice is a momentum
eigenstate |p = 0〉 proportional to

∫ |x〉dx while that owned
by Bob is a position eigenstate |x = 0〉, the output state after
the gate operation becomes proportional to

∫ |x〉A ⊗ |x〉Bdx,
which is the ideal EPR state containing an infinitely large
amount of entanglement and infinitely large energy. Therefore,
the ideal nonlocal QND sum gate can only be approached as the
preshared CV entanglement between Alice and Bob infinitely
increases.

To understand the role of classical communication in our
procedure, we suppose that the initial state owned by Alice is a
position eigenstate with an eigenvalue xA and the state owned
by Bob is another position eigenstate with an eigenvalue xB .
Since the nonlocal gate (1) implements �̂AB |xA〉A ⊗ |xB〉B =
|xA〉A ⊗ |xB + xA〉B , Bob could receive a classical real number
xA from Alice by comparing the position of his quantum state
before and after the gate operation. Local operations cannot
transmit classical information between Alice and Bob, even
if they could exploit arbitrary preshared entanglement [35].
More specifically, the maximal classical information which
can be transmitted via the nonlocal quantum gate is no more
than the amount of classical information required in the
implementation of the nonlocal gate. Thus Alice has to send at
least one classical real number to Bob in order to implement
the gate. In a similar way, when the initial states of Alice
and Bob are eigenstates of momentum, Bob can transmit a
classical real number to Alice via the nonlocal gate, which
means Bob has to send at least one classical real number
during the gate implementation. Consequently, they need at
least one classical channel in each direction (two channels in
total) for a nonlocal entangling gate, if it is based on LOCC
and preshared entanglement.

On the other hand, if we could use high-fidelity quantum
channels to directly transfer quantum states, we note that the
sequential implementation requires less resources, as has been
demonstrated in Refs. [20,21]. In principle, it requires only
a single squeezed state (while an EPR state in the parallel
scheme corresponds to two squeezed states) and a single
one-way classical channel. However, the parallel scheme is
still advantageous in the gate operation time. The time cost
of communication is doubled for the sequential scheme: the
sequential scheme requires, first, quantum communication
from Alice to Bob after the nonlocal gate operation is required,
and, second, classical communication from Bob to Alice after
the quantum communication is completed, while the parallel
scheme requires only two-way classical communication at
once during the gate operation time because the resource
EPR state can be shared before the nonlocal gate operation is
required. In addition, the implementation based on preshared
resource entanglement in principle enables entanglement
distillation by coherently combining single-photon addition
and subtraction operations [15,36,37] after they are transmitted
through the quantum channels between Alice and Bob. From
the discussions above, the advantage of the parallel scheme
and the minimum resource for the gate implementation is
intimately connected with the possibility to preshare quantum
resources and to distill them, if the quantum channels are
unreliable.
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FIG. 2. (Color online) A schematic of our experimental setup.
OPO: optical parametric oscillator; LO: local oscillator for homodyne
measurement; EOM: electro-optical modulator; HD: homodyne
detection; 50:50 (99:1): 50 (99)% reflectivity beam splitter.

C. Implementation of nonlocal QND gate

The procedure of the optimal nonlocal entangling gate
consists of the following three key steps [21]. We will
mathematically describe them by the transformations in the
Heisenberg representation taking account of finite resource
entanglement, which leads to a simple description for any
input quantum state of the nonlocal gate. For comparison, the
action of the QND gate for quadrature operators is

ξ̂
′
AB = �̂

†
AB ξ̂AB�̂AB =

⎛
⎜⎝

x̂A

p̂A − p̂B

x̂B + x̂A

p̂B

⎞
⎟⎠, (2)

where ξ̂
′
AB = (x̂ ′

A,p̂′
A,x̂ ′

B,p̂′
B)T and ξ̂AB = (x̂A,p̂A,x̂B,p̂B)T .

By applying the gate, the position operator of Alice x̂A is added
to Bob’s side x̂ ′

B = x̂B + x̂A, while the momentum operator of
Bob p̂B is subtracted from Alice’s side p̂′

A = p̂A − p̂B for the
counteraction.

First, the EPR state is preshared by Alice and Bob before
the gate is actually implemented. Note that its distribution
does not reduce the speed of the gate. To approach the ideal
EPR state with both infinite energy and entanglement, we use
a realistic EPR entangled state, which can be experimentally
generated by combining two finitely squeezed vacuum states
on a balanced beam splitter, as is depicted in Fig. 2. The
realistic EPR state with finite entanglement is characterized by
two linear combinations of position and momentum operators
as below:

x̂E1 − x̂E2 =
√

2e−r x̂
(0)
1 , (3)

p̂E1 + p̂E2 =
√

2e−r p̂
(0)
2 . (4)

Here, subscripts E1 and E2 denote two independent modes of
an EPR state, while e−r x̂

(0)
1 and e−r p̂

(0)
2 are squeezed quadra-

tures of the resource modes 1 and 2 before the balanced beam
splitter combining, characterized by a squeezing parameter r ,
respectively. The limit r → ∞ corresponds to the ideal EPR
state.
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Second, Alice and Bob couple their own input states (A
and B, respectively) with the shared EPR state on their local
balanced beam splitters. Then, one of the outputs on each side
is measured by means of homodyne detection, making the
projection on the eigenstate of either position or momentum
variable. The chosen measured observables correspond to

x̂E1′ = 1√
2

(x̂A − x̂E1) and p̂E2′ = 1√
2

(p̂B − p̂E2), (5)

and the measurement outcomes from them are denoted by sA

and sB in the following, respectively. On the other hand, the
quadratures of the remaining parts are

x̂A′ = 1√
2

(x̂A + x̂E1), p̂A′ = 1√
2

(p̂A + p̂E1), (6)

x̂B ′ = 1√
2

(x̂B + x̂E2), p̂B ′ = 1√
2

(p̂B + p̂E2). (7)

Third, the measurement outcomes are transmitted to the
other party through a two-way classical channel. Accord-
ing to the measurement outcomes, both Alice and Bob
perform feed-forward operations expressed by the operator
X̂A′(sA)ẐA′(−sB)X̂B ′(sA)ẐB ′(sB) on the rest of their states,
where X̂k(s) = e−2isp̂k and Ẑk(s) = e2isx̂k are position and
momentum displacement operators on modes k = A′,B ′,
respectively. Consequently, the input-output relation is given
by

ξ̂αβ =

⎛
⎜⎜⎜⎝

√
2 0 0 0

0 1√
2

0 − 1√
2

1√
2

0 1√
2

0

0 0 0
√

2

⎞
⎟⎟⎟⎠ξ̂AB + δ̂ (8)

≡ Ê
†
AB ξ̂ABÊAB + δ̂, (9)

where ξ̂AB = (x̂A,p̂A,x̂B,p̂B)T , ξ̂αβ = (x̂α,p̂α,x̂β,p̂β)T , δ̂ =
(0,e−r p̂

(0)
2 ,e−r x̂

(0)
1 ,0)T , and ÊAB is the entangling operator.

We use indices A,B for the input modes and α,β for the
output modes. In the limit of infinite squeezing r → ∞, the
contribution of δ̂ from the preshared state vanishes and the
gate operation reaches a perfect unitary operation.

The obtained interaction operator ÊAB can be decomposed
into ÊAB = Ŝ

†
AŜB�̂AB , where Ŝj = ei ln 2(x̂j p̂j +p̂j x̂j )/2 denotes

the −3.0 dB, x-squeezing operator on mode j . Note that local
unitary operations do not consume nonlocal resources and
do not change the amount of entanglement between the two
systems. In this sense, our nonlocal gate ÊAB is equivalent to a
nonlocal QND sum gate �̂AB . The additional local squeezing
is explained from the fact that the measurement-induced input
coupling with the balanced beam splitter works as a universal
squeezer with the squeezing level of −3.0 dB [9,21]. It is a
difference from the implementation based on the local QND
interactions [20], for which the nonlocal QND is obtained
without any local corrections. If it is necessary, the additional
local squeezing can be corrected optically by the universal
squeezers [9,21] or it can be eliminated in the quantum
memory [33].

Up to the residual local squeezing, the implemented
nonlocal QND interaction is

�̂
†
AB ξ̂AB�̂AB + η̂, (10)

where η̂ = (0,
√

2e−r p̂
(0)
2 ,

√
2e−r x̂

(0)
1 ,0)T . The residual noise

existing in p̂α and x̂β variables can be reduced by sufficient
squeezing from the squeezers OPO-1 and OPO-2, depicted in
Fig. 2. Advantageously, the feed-forward corrections eliminate
the noise existing in the antisqueezed quadratures p̂

(0)
1 er and

x̂
(0)
2 er , and therefore an impurity of the squeezed states from

the OPO-1 and OPO-2 is not limiting. The application of the
high squeezing stimulates further experimental investigation
of the limits of optical squeezing generated from the modern
optical parametric oscillators [38,39].

The scheme is also advantageous in the sense of the efficient
use of arbitrary weak resource squeezing from OPO-1 and
OPO-2. To demonstrate this, we consider the case where both
input states are coherent states. Since Eq. (9) is linear in
position and momentum operators, the output state becomes a
Gaussian state. The first moments do not affect the amount
of entanglement and thus we can solely concentrate on
the second central moments which are uniquely described
by the covariance matrix given by V ≡ 1

2 〈{ξ̂ ,ξ̂}〉, where
{û,v̂} ≡ ûv̂T + (v̂ûT )T [40]. Logarithmic negativity EN is
a good indicator of Gaussian entanglement, invariant under
local unitary operations [41,42]. For a Gaussian state, the
logarithmic negativity can be calculated from its covariance
matrix [43]. In our case, the covariance matrix and the
logarithmic negativity are as follows:

Vαβ = 1

4

⎛
⎜⎝

2 0 1 0
0 1 + e−2r 0 −1
1 0 1 + e−2r 0
0 −1 0 2

⎞
⎟⎠, (11)

EN = − ln[
√

2(1 + e−2r ) − 1]. (12)

Note that the local squeezing unitary operations potentially
used to obtain the exact QND form of the nonlocal interaction
do not change the amount of generated entanglement. From
Eq. (12), we know that EN is always positive, which means
inseparability of the two subsystems even if the resource
squeezing is infinitesimal. This fact highlights the efficiency
of our scheme in comparison with Ref. [10]. In fact, the
recent report of a one-way scheme with a four-mode linear
cluster state [10] can also be regarded as a nonlocal CV gate;
however, that gate not only requires four single-mode squeezed
resource states instead of the two demonstrated here, but also
the resource squeezing level of more than −4.0 dB in order to
obtain an entangled output state from two coherent inputs.

III. EXPERIMENTAL SETUP

The schematic of our experimental setup is shown in Fig. 2.
The light source is a continuous-wave Ti:sapphire laser with
a wavelength of 860 nm and a power of about 1.7 W. The
quantum states to be processed are in optical modes at 1 MHz
sidebands of the laser beam.

The resource EPR beams are prepared by combining two
squeezed vacuum states on a 50% reflectivity beam splitter.
The two squeezed vacuum states are each generated by a
subthreshold optical parametric oscillator (OPO). The OPO
is a bowtie-shaped cavity with a round-trip length of 500 mm,
containing a periodically poled KTiOPO4 (PPKTP) crystal
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with 10 mm in length as a nonlinear medium [44]. A second
harmonic light beam with wavelength of 430 nm and power
of about 80 mW pumps each OPO, which is generated by
another bowtie-shaped cavity containing a KNbO3 crystal as a
nonlinear medium (omitted in Fig. 2). Squeezing levels of the
resource squeezed vacuum states are about −4 dB relative to
the shot-noise level.

Nonzero amplitude of an input coherent state at 1 MHz
sidebands is generated by modulating the phase of the optical
carrier with a piezoelectric transducer (PZT) at 1 MHz. The
phase modulation creates a sideband coherent amplitude which
is out of phase with the optical carrier, and we can use it as an
excitation in either the x̂ or p̂ quadrature of the input coherent
state by controlling the phase of the optical carrier entering
the QND gate. Input coupling with one of the EPR beams at
each party is achieved via a 50% reflectivity beam splitter.
Then, one of the two beams in each party is measured by
a homodyne detector. The measurement outcomes are sent
to the other party, where they are used to drive suitable
displacement operations. A displacement operation is achieved
by combining the main beam, which carries the quantum state
to be displaced at 1 MHz, with an auxiliary beam, which is
modulated at 1 MHz on a 99% reflectivity beam splitter. The
auxiliary beam is modulated by an electro-optic modulator
(EOM), to which the homodyne signal is sent after adjusting
the gain and the phase at 1 MHz by electronic circuits.

In order to characterize the input and output states of the
gate, we measure powers of the quadratures with a spectral
analyzer. The measurement frequency is 1 MHz, while the
resolution and video bandwidths are 30 kHz and 300 Hz,
respectively. The data are averaged 20 times.

The propagation losses from the OPOs to the homodyne
detectors are 3% to 10%. The detectors’ quantum efficiencies
are 99%. The interference visibilities are 97% on average.

IV. EXPERIMENTAL RESULTS

We have collected our experimental results testing the
nonlocal QND sum gate up to the local squeezing operations
as shown in Figs. 3 and 4. Figure 3 shows the output quadrature
powers for several input coherent states, from which the
input-output relation is confirmed. Figure 4 shows a covariance
matrix of one of the output Gaussian states, from which the
existence of entanglement is verified.

First, we determine variances of the output quadratures by
checking the case of vacuum input states and depict them in

-0.25

0
0.25

0.5
0.75

FIG. 4. (Color online) A covariance matrix of output states for
vacuum inputs. Measured values of the covariance matrix are shown
in Eq. (13).

Fig. 3(a). The theoretical predictions and experimental results
are shown in Fig. 3(a). The ideal case, which corresponds to
r → ∞ in Eq. (9), is shown by cyan lines. On one hand, the
uncorrelated quantum fluctuations of p̂B and x̂A are added
to those of p̂A and x̂B by the sum gate ÊAB , which leads to
3.0 dB increase of p̂A and x̂B . On the other hand, additional
local squeezing operation Ŝ

†
AŜB increases x̂A and p̂B by 3.0

dB, while it decreases p̂A and x̂B . In total, at the output of the
gate, the variances of p̂α and x̂β are equal to the shot-noise
level (SNL), while the variances of x̂α and p̂β are 3.0 dB above
the SNL (two times the SNL).

When the resource squeezing in the OPO-1 and OPO-2
is finite, the output states are influenced by the additional
excess noise. We show as a reference the theoretical prediction
for the case without the entanglement [r = 0 in Eq. (9)] by
green dashed lines. In this case, the nonlocal operation is
performed purely classically, assisted only by the two-way
classical communication. The variances of p̂α and x̂β become
3.0 dB above the SNL (two times the SNL), while those of
x̂α and p̂β are not affected by the level of resource squeezing.
The experimental results of 〈x̂2

α〉, 〈p̂2
α〉, 〈x̂2

β〉, and 〈p̂2
β〉, shown

by the red traces, are between the cyan and green lines due to
the finite resource squeezing. They correspond to 3.0, 1.2, 1.5,
and 3.1 dB above the SNL from left to right, respectively.
These results are consistent with the resource squeezing
level of −4 dB, which leads to 1.5 dB above the SNL for
p̂α and x̂β .

Second, we replace the input vacuum state of either mode
A or mode B by a coherent state, by which the input-output
relation is confirmed on the assumption of linear response of

FIG. 3. (Color online) (a) Powers at the outputs for vacuum inputs. The black and red traces show the shot noise and experimental output
quadratures, respectively. The green dashed lines show the theoretical predictions without resource squeezing, while the cyan lines show the
theoretical predictions for an ideal gate. (b)–(e) Powers at the outputs for coherent inputs where (〈x̂A〉,〈p̂A〉,〈x̂B〉,〈p̂B〉) corresponds to (a,0,0,0),
(0,a,0,0), (0,0,b,0), and (0,0,0,b), respectively. The coherent amplitudes a and b correspond to 11.0 and 12.5 dB above the shot-noise level,
respectively. The blue lines show the theoretical predictions based on the experimental results of (a). vac.: vacuum state; coh.: coherent state.
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the gate. The powers of the input amplitude quadratures are
individually measured in advance, corresponding to 11.0 dB
for mode A and 12.5 dB for mode B, respectively, compared
to the SNL. Figure 3(b) shows the powers of the output
quadratures as red traces when the input A is in a coherent state
with a nonzero coherent amplitude only in the x̂A quadrature. It
corresponds to 11.0 dB above the SNL, while the input B is in
a vacuum state. We observe an increase in power of x̂α and x̂β

compared to the case of two vacuum inputs, which is caused by
the nonzero coherent amplitude. On the other hand, p̂α and p̂β

are not changed. In the same figure, the theoretical prediction
calculated from the measured input coherent amplitude is
shown by blue lines. Due to the additional local squeezing
operators Ŝ

†
AŜB , the coherent power of x̂α increases by 3.0 dB

(corresponding to about 14 dB above the SNL), while that of
x̂β decreases by 3.0 dB (corresponding to about 8 dB above
the SNL), respectively. Similarly, Figs. 3(c)–3(e) show the
results with a nonzero coherent amplitude in the p̂A, x̂B , and
p̂B quadratures, respectively.

These experimental results are in good agreement with
the theory described by the transformation (9). We see the
expected feature of the sum gate that the sum of x̂A and x̂B

appears in x̂β , while the sum of p̂A and −p̂B appears in p̂α , up
to the local squeezing. We believe that the small discrepancies
between our experimental results and the theoretical predic-
tions are caused by the (unbalanced) propagation losses and
nonunity visibilities of interferences with local oscillators at
the homodyne detections.

Finally, Fig. 4 shows the covariance matrix of the output
state, calculated from the experimental variances for the case
of the vacuum input states. The diagonal elements are obtained
by measuring the variances of the output quadratures x̂j and
p̂j . The off-diagonal elements in each single mode, such as
V12, are obtained by measuring the variances of (x̂j ± p̂j )/

√
2.

The other off-diagonal elements can be obtained by measuring
the variances of ξ̂j ± ξ̂k , where ξ̂ = {x̂,p̂}. The experimental
covariance matrix is as follows:

V =

⎛
⎜⎝

0.50 0.01 0.25 −0.02
0.01 0.32 −0.02 −0.22
0.25 −0.02 0.34 −0.01

−0.02 −0.22 −0.01 0.50

⎞
⎟⎠ . (13)

The margin of error for each measured matrix element is plus
or minus less than 0.002. Note that it satisfies the physical

condition V + (i/4) � � 0, where � = (0 −1
1 0 ) ⊕ (0 −1

1 0 )
[43,45]. The covariance matrix obtained from the mea-
surement results is in good agreement with the theoretical
prediction in Eq. (11). We then calculate the logarithmic
negativity EN of the output state from this covariance matrix
by using Eq. (13), and the obtained value is

EN = 0.40 ± 0.01. (14)

This value corresponds to −4.1 ± 0.1 dB from Eq. (12), which
is in good agreement with the experimental resource squeezing
level of about −4 dB. The nonzero (positive) value is
the evidence of the entanglement between the two output
modes.

V. CONCLUSION

We have experimentally demonstrated an all-optical nonlo-
cal QND sum gate for continuous variables up to local squeez-
ing unitary operations. Advantageously, this all-optical scheme
needs only local passive beam-splitter coupling between the
optical modes at each node. It also requires one preshared state
with the EPR quantum correlations and one two-way classical
channel, which are the minimal resource requirements for
a nonlocal entangling QND gate. In our experiment, all of
the local operations, measurements, and two-way classical
communications are running truly in parallel, which increases
the speed of the gate to the limit given by the technical
issues. The capability of the gate to produce entanglement
at the output is verified by the logarithmic negativity for the
case of two coherent input states. The nonlocal all-optical
QND gate, together with quantum memories, can be, in the
future, incorporated into distributed quantum computing as a
cross-processor operation.
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