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We introduce a fully tunable entangling gate for continuous-variable one-way quantum computation. We
present a proof-of-principle demonstration by propagating two independent optical inputs through a three-mode
linear cluster state and applying the gate in various regimes. The genuine quantum nature of the gate is confirmed
by verifying the entanglement strength in the output state. Our protocol can be readily incorporated into efficient
multimode interaction operations in the context of large-scale one-way quantum computation, as our tuning
process is the generalization of cluster-state shaping.
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I. INTRODUCTION

The quantum computer promises an impressive speedup
in certain problems such as prime factorization [1].
Measurement-based quantum computation (MBQC) is one
approach to processing quantum information, attractive due
to its relative ease of use once a suitable resource state has
been prepared. In MBQC, unitary operations are performed via
preprepared multipartite entangled resource states, referred to
as cluster states [2–4]. Sufficiently large cluster states are first
prepared before being appropriately reshaped for any specific
operations. Arbitrary unitary operations are implemented by
the precise selection of measurement bases and outcome-
dependent feedforward operations.

To date there have been several demonstrations of MBQC,
predominantly in quantum optics. Optical experiments per-
formed in a continuous-variable (CV) setting benefit from
deterministic state generation as well as deterministic im-
plementations of Gaussian operations. The cluster states
that facilitate MBQC can be generated via linear optics
[5–8]. Four-mode and six-mode cluster states have been
used to implement arbitrary single-mode Gaussian gates [9],
a two-mode Gaussian gate [10], and a gate sequence of
these two [11]. Reshaping a cluster state [12] is possible
through quantum erasing [13] and wire shortening [14], which
correspond to erasing and preserving the interaction gains
between the nodes of the cluster state, respectively. Recently,
large-scale [7] and ultralarge-scale [8] cluster states have
been generated by multiplexing in the frequency and time
domains, respectively, both based on the same theoretical
proposal [15,16].

Present techniques for shaping a cluster are inherently
inefficient due to the lack of control over the interaction
strength. For example, the fixed-strength entangling gate
demonstrated in Ref. [10] cannot have its entanglement
strength tuned, and therefore it cannot completely make use of
the underlying structure of the cluster state [17].
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In this paper, we present a fully tunable entangling gate
for CV one-way quantum computation and experimentally
demonstrate a proof-of-principle implementation. Our tunable
gate can be interpreted as a generalized instance of cluster-state
reshaping, which we name cluster gain tuning. Our implemen-
tation involves propagating two independent quantized optical
modes (qumodes) through a three-mode linear cluster state
while implementing the gate at various strengths. The tunable
interaction gain in the resource cluster state is teleported onto
the two-mode input state [18], thus appearing at the output and
becoming manifest as a certain form of entanglement.

II. PROTOCOL FOR TUNABLE ENTANGLING GATES
VIA CLUSTER GAIN TUNING

Our quantum states are represented by the quadrature
operators (x̂j ,p̂j ) of an electric field (annihilation) operator
âj = x̂j + ip̂j , where the subscript j denotes the j th optical
mode. These quadrature operators play the roles of position
and momentum operators of the corresponding harmonic
oscillator, and hence they are canonically conjugate variables:
[x̂j ,p̂k] = i/2 δjk (� = 1/2), where δjk is the Kronecker delta.
A CV cluster state is defined, in the ideal case, through its zero
eigenvalues for certain linear combinations of the canonical
operators, so-called nullifiers,

p̂Cj −
∑
k∈Nj

x̂Ck ≡ δ̂j , (1)

where Nj refers to the nearest-neighbour nodes of node j

in the sense of a general graph [19]. Arbitrary bonds in
CV cluster states are generated by applying controlled-PHASE

gates ĈZjk = e2ix̂j x̂k on pairs of nodes, which are initialized
as momentum eigenstates with 0 eigenvalues in the limit of
infinite squeezing [4]. This can be understood mathematically
as the transformation of nullifiers,⎛

⎝∑
k∈Nj

ĈZjk

⎞
⎠p̂Cj

⎛
⎝∑

k∈Nj

Ĉ
†
Zjk

⎞
⎠ = δ̂j . (2)
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The controlled-PHASE gates will be generalized to include
arbitrary, real gain values, ĈZjk(g) ≡ e2igx̂j x̂k , leading to
certain weighted (real-valued) graph states, with g = 1 as the
special case of unweighted graph states. More generally, any
physical graph state can be described by complex weights
and a complex adjacency matrix (including self-loops), cor-
responding to a set of non-Hermitian nullifiers, where the
eigenvalue (nullifier) conditions are still exactly fulfilled even
for finite squeezing [20]. However, instead of complex weights
in the following, we describe physical, finitely squeezed cluster
states allowing nonzero excess noise in the Hermitian nullifier
operators δ̂j [10].

After the preparation of a generic cluster state, the undesired
bonds and nodes of the cluster can be erased by means of
measurement and feedforward, applying the quantum eraser
[13]. For example, the three-mode linear cluster state shown
at the top in Fig. 1(a), which is the resource state for our
demonstration of the tunable entangling gate, has bonds
(C1-C2) and (C2-C3). By measuring the position operator
of node C2 (x̂C2) and subtracting the measurement outcome
from the momentum operators of the nearest-neighbor nodes
(C1 and C3), the bonds are erased and the two modes end
up in a separable state [bottom left, Fig. 1(a)]. On the other
hand, a node can be deleted while keeping the bond up to
local phase rotations, which is called wire shortening [14].
By measuring the momentum operator of node C2 (p̂C2)
in the same three-mode linear cluster state and subtracting
the measurement outcome from the position operator of a
nearest-neighbor node (either C1 or C3), the resulting two-
mode state becomes an Einstein-Podolsky-Rosen state or a
two-mode cluster state up to local phase rotations [bottom
right, Fig. 1(a)]. The two procedures described above can then
be regarded as two extreme cases of cluster shaping. Here
we generalize these procedures by considering intermediate
operations between them, where we can tune the cluster gain
between two cluster nodes via the measurement of the center
node up to local unitaries.

We now discuss our implementation of cluster gain tuning
on a three-mode linear cluster state. Here we consider a mea-
surement of the observable x̂C2 cos θ − p̂C2 sin θ on cluster
node C2, where θ = 0◦ and 90◦ correspond to erasing and
wire shortening, respectively. By subtracting the measurement
outcome rescaled by 1/ cos θ from the momentum operators
of nearest-neighbor nodes (C1 and C3), the nullifiers of the
resulting state become

δ̂′
1 ≡ p̂C1 − (x̂C1 + x̂C3) tan θ and (3a)

δ̂′
3 ≡ p̂C3 − (x̂C1 + x̂C3) tan θ (3b)

[bottom center, Fig. 1(a)] (see Appendix B). In analogy with
Eq. (2), they correspond to the transformation of nullifiers:

T̂ZC1C3(θ )p̂C1T̂
†

ZC1C3(θ ) = δ̂′
1, (4a)

T̂ZC1C3(θ )p̂C3T̂
†

ZC1C3(θ ) = δ̂′
3, (4b)

where the definition of the unitary operator is

T̂Zjk(θ ) ≡ ei(x̂j +x̂k )2 tan θ , (5)
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FIG. 1. (Color online) (a) Cluster-state shaping. Top: An initial
three-mode linear cluster state. Bottom left: Quantum erasing. Bottom
center: Interaction gain tuning. Bottom right: Wire shortening.
Hemispheric objects next to the nodes (circles) and arrows represent
measurements and feedforwards regarding measurement outcomes,
respectively. �̂ is the measurement observable. (b) Abstract illustra-
tion of our experiment. Dashed lines represent beam-splitter coupling.
(c) Schematic of our experimental setup. EOM, electro-optical
modulator; HD, homodyne detector; LO, local oscillator; OPO,
optical parametric oscillator; r%R, r% reflectivity beam splitter.

and therefore the resulting state corresponds to the application
of the gate on two momentum eigenstates with zero eigen-
values. We name this operation the fully tunable entangling
gate TZ, which has the tunable interaction parameter tan θ .
Since the measurement angle θ can be set arbitrarily from
−90◦ to 90◦, the TZ gate can have an arbitrary real value of
the interaction parameter tan θ . The TZ gate consists of two
quadratic phase gates for individual modes (eix̂2

j tan θ ,eix̂2
k tan θ )

[21] and a controlled-PHASE gate [CZjk(tan θ ) = e2ix̂j x̂k tan θ ]
with the arbitrary interaction parameter tan θ . The above
cluster gain tuning allows for the generation of weighted gain
cluster states from larger unweighted cluster states, while
additional single-mode operations can be absorbed in the
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measurements at the latter process in order to perform larger
one-way quantum computations.

The tunable entangling gate is constructed by combining
the cluster gain tuning scheme with two input states as shown
in Fig. 1(b). Two input states in modes α and β are teleported to
modes C1 and C3 by half Bell measurements and cluster gain
tuning, resulting in the TZ gate operation’s being teleported
onto the input states [18].

In the following we describe the above procedure taking
into account the excess noises δ̂j due to finite squeezing. Each
input mode (α or β) is coupled with a side mode in the cluster
state via a balanced beam splitter. Then one output arm of each
of the two mixing beam splitters as well as the center mode in
the cluster state is measured by means of homodyne detection.
The measured observables correspond to

ŝ1 ≡ x̂α′ = 1√
2
(x̂α − x̂C1), (6a)

ŝ3 ≡ x̂β ′ = 1√
2
(x̂β − x̂C3), and (6b)

ŝ2(θ ) ≡ x̂C2 cos θ − p̂C2 sin θ, (6c)

where θ is the measurement angle of homodyne detection on
the center mode. We use primes to mark the modes after each
beam-splitter interaction. The quadratures of the remaining
parts are

x̂C1′ = 1√
2
(x̂α + x̂C1), p̂C1′ = 1√

2
(p̂α + p̂C1), (7a)

x̂C3′ = 1√
2
(x̂β + x̂C3), p̂C3′ = 1√

2
(p̂β + p̂C3). (7b)

Measurement bases (6a)–(6c) and nullifiers of an initial
state determine feedforward operations to erase classical
correlations derived from the measurements. Based on the
measurement outcomes, we perform the following feedfor-
ward operations onto the rest of the states,

X̂C1′ (ŝ1)ẐC1′

(
(ŝ1 + ŝ3) tan θ − ŝ2(θ )√

2 cos θ

)
and (8a)

X̂C3′ (ŝ3)ẐC3′

(
(ŝ1 + ŝ3) tan θ − ŝ2(θ )√

2 cos θ

)
, (8b)

where X̂k(s) = e−2isp̂k and Ẑk(s) = e2isx̂k are the Weyl-
Heisenberg position and momentum displacement operators
for the state labeled by k, respectively. Position displacements
are terms for the teleportation of input modes. On the other
hand, momentum displacements according to the measurement
outcome for mode C2 arise from cluster gain tuning. The
rest corresponds to correction terms in order to accomplish
teleportation and cluster gain tuning simultaneously. The
effects of these displacement operators correspond to additions
and subtractions for quadratures [see Appendix A],

x̂μ ≡ x̂C1′ + ŝ1 =
√

2x̂α, (9a)

p̂μ ≡ p̂C1′ + (ŝ1 + ŝ3) tan θ − ŝ2(θ )√
2 cos θ

= 1√
2

[p̂α + (x̂α + x̂β) tan θ + δ̂1 + δ̂2 tan θ ], (9b)

x̂ν ≡ x̂C3′ + ŝ3 =
√

2x̂β , (9c)

p̂ν ≡ p̂C3′ + (ŝ1 + ŝ3) tan θ − ŝ2(θ )√
2 cos θ

= 1√
2

[p̂β + (x̂α + x̂β) tan θ + δ̂3 + δ̂2 tan θ ], (9d)

where we refer to the two output modes as μ and ν in order
to distinguish them from the input modes denoted α and
β. Consequently, the input-output relation in the Heisenberg
picture is given by

ξ̂μν =
(

S 0

0 S

)(
I + T (θ ) T (θ )

T (θ ) I + T (θ )

)
ξ̂αβ + δ̂ (10)

= (ŜαŜβ T̂Zαβ(θ ))†ξ̂αβ(ŜαŜβ T̂Zαβ(θ )) + δ̂, (11)

where

ξ̂μν =

⎛
⎜⎜⎜⎝

x̂μ

p̂μ

x̂ν

p̂ν

⎞
⎟⎟⎟⎠, ξ̂αβ =

⎛
⎜⎜⎜⎝

x̂α

p̂α

x̂β

p̂β

⎞
⎟⎟⎟⎠, (12)

S =
(√

2 0
0 1/

√
2

)
, T (θ ) =

(
0 0

tan θ 0

)
, (13)

I is the 2 × 2 identity matrix, and

δ̂ =

⎛
⎜⎜⎜⎜⎝

0

δ̂1 + δ̂2 tan θ

0

δ̂3 + δ̂2 tan θ

⎞
⎟⎟⎟⎟⎠ (14)

are excess noise terms for imperfect resource squeezing. There
are local squeezing operations Ŝj = e−i ln 2(x̂j p̂j +p̂j x̂j )/2 in
addition to the teleported TZ gate. These −3.0-dB p-squeezing
operations are due to the input coupling with a balanced beam
splitter. A half-teleportation with a beam-splitter coupling
corresponds to a squeezing gate [22,23]. Note that it can be
eliminated by adding an additional coupling node at the edge
of cluster states, by which full quantum teleportation with full
Bell measurements is performed into the cluster state instead
of half-teleporation with half Bell measurements [17].

In order to verify the entangling capability of the TZ gate,
we now consider the case where both input states are coherent
states. Since there are various measurable quantum correla-
tions depending on the measurement basis ŝ2(θ ), we evaluate
the entanglement with the minimum symplectic eigenvalue
λ̃− of the partially transposed covariance matrix of the output
state [24], which is invariant under arbitrary local unitary
operators. This corresponds to the logarithmic negativity,
which gives EN = max[0, − ln(4λ̃−)] for the case of Gaussian
states and which is an entanglement measure invariant under
local unitary operations [25]. The covariance matrix is given
by V ≡ 1

2 〈{ξ̂ ,ξ̂}〉, where {û,v̂} ≡ ûv̂T + (v̂ûT )T [20].
For our setup the minimum symplectic eigenvalue becomes

λ̃− = 1

4
{1 + 2t2 + (2 + 3t2)e−2r

−
√

4t2[1 + t2 + (2 + 3t2)e−2r ] + [(1 + 3t2)e−2r ]2}1/2,

(15)
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where t = tan θ . It can be calculated by means of the
excess noise terms with δ̂1 = √

2e−r p̂
(0)
1 , δ̂2 = √

3e−r p̂
(0)
2 , and

δ̂3 = 1√
2
e−r p̂

(0)
1 +

√
3
2e−r p̂

(0)
3 , where e−r p̂

(0)
j is a squeezed

quadrature of the j th resource squeezed-vacuum mode before
the beam-splitter network. Here we assume that all three
modes have the same level of squeezing r , for simplicity.
The asymmetric case is easily derived in a similar manner.
The ideal (unphysical) cluster state is obtained in the limit
r → ∞.

The positivity under partial transposition (PPT criterion) is
a necessary (and sufficient, in the case of two-mode Gaussian
states) measure for the separability of a state [26]. Thus, the
output states of our setup are entangled if λ̃− is below 1/4. Fur-
thermore, the closer λ̃− is to 0, the stronger is the entanglement
in the output states. With respect to our TZ gate, λ̃− becomes
smaller as we increase the interaction parameter tan θ .

III. EXPERIMENT

A schematic of our experimental setup is shown in Fig. 1(c).
The light source is a continuous-wave Ti:sapphire laser with
a wavelength of 860 nm and a power of about 1.7 W.
The quantum states to be processed are qumodes at 1-MHz
sidebands of the laser beam. The resource cluster state is
prepared by combining three squeezed vacuum states on
two beam splitters, each generated by a subthreshold optical
parametric oscillator (OPO). We mainly employ the experi-
mental techniques described in Ref. [27] for the feedforward
of measurement results through classical channels. Note that
the tunable interaction parameter t = tan θ of the TZ gate is
accessed via the relative phase θ between the signal beam
and the reference local oscillator beam at the homodyne-2
detection station (HD-2). The relative phase is precisely
controlled via the voltage sent to a piezoelectric transducer
(PZT) attached to a mirror. Squeezing levels of the resource
squeezed vacuum states are about −4.5 dB. The propagation
losses from the optical parametric oscillators to the homodyne
detectors are 3% to 9%. The detectors’ quantum efficiencies
are 99%, and the interference visibilities are 96% on average.

In order to evaluate our gate we measure the powers of
the quadratures at the homodyne detectors with a spectrum
analyzer. The measured frequency is 1 MHz, with a resolution
bandwidth of 30 kHz and video bandwidth of 300 Hz. For each
quadrature, 101 data points are taken, with a sweep time of
0.05 s, while this is repeated 10 times for averaging. Standard
errors in these averaged measurements are less than 0.06 dB.
In the case of coherent state inputs, we average over even more
measurements, leading to standard errors of <0.01 dB. Note
that no corrections are applied for any experimental losses.

In Figs. 2(a)–2(d), we visualize the phase-space
distributions of the output Gaussian states by el-
lipses for seven interaction parameters, t = tan θ ∈
{0, 1

5 , 1
2 , 1√

2
, 1,

√
2, 2}, for vacuum state inputs. These in-

teraction parameters correspond to the measurement angles
θ ∈ {0.0◦, 11.3◦, 26.6◦, 35.3◦, 45.0◦, 54.7◦, 63.4◦}. The sec-
ond moments are expressed by the size of the phase-space
ellipse, which corresponds to the cross section of the quantum

(b) Ideal case. HDν(a) Ideal case. HDμ

(d) Experiment. HDν

(e) Input: vacuum states

(c) Experiment. HDμ
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FIG. 2. (Color online) Output states for a TZ gate operating
at several interaction parameters, t = tan θ ∈ {0, 1/5, 1/2, 1/

√
2,

1,
√

2, 2}, employing two vacuum inputs. (a–d) Phase-space dis-
tributions. The second moments of Gaussian Wigner functions are
represented by ellipses. Long and short radii correspond to

√
2 times

standard deviations in the corresponding directions. (a, b) Theoretical
predictions for the ideal case with infinite resource squeezing. (c,
d) Experimental results computed from the measured variances of
x̂j , p̂j , and (x̂j ± p̂j )/

√
2, where j ∈ {μ,ν}. (e) Measured variances

of x̂j , p̂j . The horizontal axis is the relative phase θ between
the signal beam and the local oscillator beam at HD-2, which
determines the interaction parameter, as t = tan θ . Colored lines show
the theoretical predictions of (i) 〈x̂2

j 〉, (ii) 〈p̂2
j 〉 without squeezing,

(iii) 〈p̂2
j 〉 with −4.5-dB resource squeezing, and (iv) 〈p̂2

j 〉 with
inifinite squeezing (unphysical, ideal case). Error bars are omitted,
because they are very small compared to the scale of the vertical
axis.
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state’s Wigner function. Long and short radii correspond to√
2 times standard deviations in the corresponding directions.
The theoretical predictions of the ideal case with infinite

resource squeezing (r → ∞) are shown in Figs. 2(a) and
2(b). Here, we see that the x̂ quadrature amplitudes remain
fixed, while the p̂ quadrature amplitudes increase with larger
interaction parameter values. The broadening in p̂ is due to
the uncorrelated quantum fluctuations of both x̂α and x̂β being
added to p̂α and p̂β by the interaction-parameter-dependent TZ

gate. Note that the additional local squeezing operations de-
crease these fluctuations. The variances of x̂α and x̂β are fixed
at twice the shot noise level (SNL) from the additional local
squeezing and are not dependent on the interaction parameter.

The experimental results are shown in Figs. 2(c) and 2(d),
which are calculated from the measured variances of x̂j , p̂j ,
and (x̂j ± p̂j )/

√
2, where j ∈ {μ,ν}. We assume a Gaussian

distribution and 0 mean value. Each of the two output modes
has a nearly identical phase-space distribution with respect to
the other, indicative of the high level of symmetry in our optical
mode matching. We see a slight broadening in p̂ compared to
the ideal case predicted by theory, due to the finite resource
squeezing which couples in excess noise, while x̂ remains
unaffected, in accordance with δ̂ in Eq. (14).

In order to compare them with the following results, the
measured variances of x̂α , x̂β , p̂α , and p̂β are plotted in
Fig. 2(e). The horizontal axis is the relative phase θ between
the signal beam and the local oscillator beam at HD-2. The
variances of x̂ are 3.0 dB above the SNL independent of
the resource squeezing level r and the interaction parameter
tan θ as expected from the theory expressed by the blue line,
(i),while p̂ depends on them. The green line, (ii), represents
the theoretical predictions for zero resource squeezing, while
the orange line, (iv), represents infinite squeezing. Finite
squeezing values appear between these two extremes, and we
find that our experimental results are close to the theoretical
prediction of −4.5-dB resource squeezing, as indicated by
the red line, (iii). These results indicate a good qualitative
agreement with the theoretical predictions.

Next, we replace one of the input vacuum states by coherent
states, allowing us to verify the input-output relationship based
on the assumption that the gate has a linear response. The
powers of the input amplitude quadratures are individually
measured in advance, corresponding to 13.8 dB for mode α

and 16.9 dB for mode β, respectively, compared to the SNL.
In analogy with Fig. 2, Fig. 3(a) shows the powers of the

output quadratures for an input coherent state α and an input
vacuum state β. The output quadrature powers are shown as
a function of the relative phase θ between the signal beam
and the local oscillator beam at HD-2, which determines the
interaction parameter tan θ . Theoretical predictions are shown
as lines and experimental data as markers. The predictions are
calculated from the measured input coherent amplitude with a
resource squeezing level of −4.5 dB. We observe fixed power
increases in x̂- and θ -dependent increases in p̂. The power of
x̂μ increases by 3.0 dB above the inital 13.8 dB (corresponding
to about 17 dB above the SNL; blue symbols), which is due
to the additional local squeezing operation. The power of x̂ν is
the same as the case of two vacuum inputs (corresponding to
3.0 dB above the SNL; cyan symbols). p̂μ and p̂ν experience

(a) Input: xA-coh. 
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FIG. 3. (Color online) Powers at the outputs from two coherent
inputs with several interaction parameters. Horizontal axes are the
relative phases θ between the signal beam and the local oscillator
beam at HD-2, which are related to the interaction parameters tan θ .
(a–d) (〈x̂α〉, 〈p̂α〉, 〈x̂β〉, and 〈p̂β〉) are (a,0,0,0), (0,a,0,0), (0,0,b,0),
and (0,0,0,b), where a2 and b2 correspond to 13.8 and 16.9 dB above
the shot noise level, respectively. (i), (ii), (iii), and (iv) Theoretical
predictions of (i) 〈x̂2

μ〉, (ii) 〈p̂2
μ〉, (iii) 〈x̂2

ν 〉, and (iv) 〈p̂2
ν〉 with −4.5-dB

resource squeezing. coh., coherent state. Error bars are omitted,
because they are very small compared to the scale of the vertical axis.
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FIG. 4. (Color online) Dependence of the entanglement at the
outputs on the interaction parameters of the TZ gate. The horizontal
axis corresponds to the relative phase θ between the signal beam and
the local oscillator beam at HD-2, which determines the interaction
parameter tan θ . The vertical axis corresponds to the symplectic
eigenvalues of the partially transposed covariance matrix of the output
state, connected to a measure of entanglement (see text). (i) Without
squeezing, (ii) with −4.5-dB resource squeezing, (iii) with infinite
squeezing (unphysical, ideal case), and (iv) quantum boundary; values
below satisfy a sufficient condition for entanglement. Error bars show
standard errors.

larger increases in power relative to the case of vacuum
inputs in Fig. 2(e), due to the increasing contribution of the
nonzero coherent amplitude of x̂α via the TZ gate. Similarly,
Figs. 3(b), 3(c), and 3(d) show the results for a nonzero
coherent amplitude in the p̂α , x̂β , and p̂β input quadratures,
respectively. The TZ gate behaves as predicted, with the sum
of x̂α and x̂β appropriately appearing in both p̂μ and p̂ν

quadratures, as a function of the interaction parameters. The
small discrepancies between our experimental results and the
theoretical predictions are caused by the (slightly unbalanced)
propagation losses and nonunity homodyne detections.

Finally, the entanglement strength is quantified in Fig. 4.
Shown there is the set of symplectic eigenvalues λ̃− of the
partially transposed covariance matrices corresponding to the
output states. These are calculated from the variances of
the output quadratures for vacuum inputs (see Ref. [28] for
details) and are displayed as a function of the TZ interaction
parameter (as determined by the relative phase of homodyne
detection). Note that the results of covariance matrices satisfy
the physicality condition V + (i/4) 	 � 0, where 	 is a
direct sum of

(0 −1
1 0

)
[29,30]. The theoretical predictions

for the experiment with and without resource squeezing are
represented by the theoretical curves, (ii) and (i), respectively.
We observe the remarkable feature of an enhancement in
entanglement strength dependent on the interaction parameter.
The entangling criterion is satisfied for parameter values
of tan θ = 1

2 , 1√
2
, 1,

√
2, and 2 when the resource state

is squeezed. Conversely, without squeezing, the symplectic
eigenvalues never cross the quantum boundary for any value
of interaction parameter.

IV. CONCLUSION

In conclusion, we have proposed and experimentally
demonstrated a fully tunable TZ gate for CV one-way quantum
computation. Our proof-of-principle demonstration employs a
three-mode linear cluster state as a resource for implementing
a new cluster gain tuning protocol. The ability of the gate
to produce entanglement at the output is verified via the
symplectic eigenvalues of the partially transposed covariance
matrix of the output for the case of two coherent input states.
The interaction parameter at the gate and, accordingly, the
entanglement strength in the output state are accurately tuned
by a corresponding tuning of the set of measurement bases.
Since our gate can be directly incorporated into large-scale
one-way quantum computation schemes, it may facilitate
efficient implementations of MBQC with cluster states.
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APPENDIX A: MATHEMATICAL TREATMENT
OF FEEDFORWARD

We consider a situation where some observable ŝc of a
control mode c is measured and then the outcome s is used
for feedforward to a target mode t as a displacement operation
Ẑt (s) = e2isx̂t . As its name suggests, a displacement operator
Ẑt (s) displaces a quadrature operator in the p̂ direction,

Ẑ
†
t (s)x̂t Ẑt (s) = x̂t , Ẑ

†
t (s)p̂t Ẑt (s) = p̂t + s. (A1)

It is a well-known fact, as depicted in Fig. 5, that a
measurement in the middle of successive unitary gates can be
moved to the last by appropriately replacing the feedforward
circuits with controlled gates. Based on this equivalence, here
as a matter of notation, we write a Ẑt (s) gate dependent on a
measurement outcome s of an observable ŝc as Ẑt (ŝc) = e2iŝc x̂t ,
which transforms the quadrature operators,

Ẑ
†
t (ŝc)x̂t Ẑt (ŝc) = x̂t , Ẑ

†
t (ŝc)p̂t Ẑt (ŝc) = p̂t + ŝc. (A2)

As a special case, when ŝc = x̂c, the equivalent gate Ẑt (x̂c) =
e2ix̂c x̂t = ĈZct is a controlled-PHASE gate.

mode c

mode t

mode c

mode t

FIG. 5. Equivalent quantum circuits. Left: Executing displace-
ment after measurement. Right: Measurement after an interaction
gate.
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Similarly, we can also consider the case of x̂-direction dis-
placement feedforward X̂t (s) = e−2isp̂t , where the equivalent
controlled gate is X̂t (ŝc) = e−2iŝc p̂t .

APPENDIX B: NULLIFIERS AFTER CLUSTER
GAIN TUNING

In the cluster gain tuning starting from a three-mode linear
cluster state in Fig. 1(a), first a center mode is measured with
respect to an observable,

ŝ2(θ ) = x̂C2 cos θ − p̂C2 sin θ. (B1)

Then the outcome s2 is used for a feedforward displacement
operation ẐC1(−s2/ cos θ )ẐC3(−s2/ cos θ ), which transforms
the quadratures of the remaining two modes as

x̂ ′
C1 = Ẑ

†
C1

(
− ŝ2(θ )

cos θ

)
x̂C1ẐC1

(
− ŝ2(θ )

cos θ

)
= x̂C1, (B2a)

p̂′
C1 = Ẑ

†
C1

(
− ŝ2(θ )

cos θ

)
p̂C1ẐC1

(
− ŝ2(θ )

cos θ

)

= p̂C1 − ŝ2(θ )

cos θ
= p̂C1 − x̂C2 + p̂C2 tan θ, (B2b)

x̂ ′
C3 = Ẑ

†
C3

(
− ŝ2(θ )

cos θ

)
x̂C3ẐC3

(
− ŝ2(θ )

cos θ

)
= x̂C3, (B2c)

p̂′
C3 = Ẑ

†
C3

(
− ŝ2(θ )

cos θ

)
p̂C3ẐC3

(
− ŝ2(θ )

cos θ

)

= p̂C3 − ŝ2(θ )

cos θ
= p̂C3 − x̂C2 + p̂C2 tan θ. (B2d)

Here, we define the prime quadratures as new quadratures after
displacement.

In Sec. II, the nullifiers of initial three-mode cluster states
are explained as follows:

δ̂1 = p̂C1 − x̂C2, (B3a)

δ̂2 = p̂C2 − x̂C1 − x̂C3, (B3b)

δ̂3 = p̂C3 − x̂C2. (B3c)

In fact, nullifier operators span a vector space, and an
arbitrarily linear combination of the above three operators is
included in the nullifier set. The dimension of the simplest
nullifier vector space corresponds to the number of modes
(nodes) of the cluster states. In our cluster gain tuning,
the center mode in the three-mode cluster states vanishes
by measurement, which reduces the degrees of freedom of
the nullifier space from three to two. The remaining two-
dimensional nullifier space is spanned by the following two
operators:

δ̂′
1 = p̂′

C1 − (x̂ ′
C1 + x̂ ′

C3) tan θ

= (p̂C1 − x̂C2) + (p̂C2 − x̂C1 − x̂C3) tan θ

= δ̂1 + δ̂2 tan θ, (B4a)

δ̂′
3 = p̂′

C3 − (x̂ ′
C1 + x̂ ′

C3) tan θ

= (p̂C3 − x̂C2) + (p̂C2 − x̂C1 − x̂C3) tan θ

= δ̂3 + δ̂2 tan θ. (B4b)
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