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Direct observation of phase-sensitive Hong-Ou-Mandel interference
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The quality of individual photons and their ability to interfere are traditionally tested by measuring the Hong-
Ou-Mandel photon bunching effect. However, this phase-insensitive measurement only tests the particle aspect
of the quantum interference, leaving out the phase-sensitive aspects relevant for continuous-variable processing.
To overcome these limitations we formulate a witness capable of recognizing both the indistinguishability of the
single photons and their quality with regard to their continuous-variable utilization. We exploit the conditional
nonclassical squeezing and show that it can reveal both the particle and the wave aspects of the quantum
interference in a single set of direct measurements. We experimentally test the witness by applying it to a pair of
independent single photons retrieved on demand.
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I. INTRODUCTION

Quantum interference of individual photons is one of the
fundamental principles of quantum technology. The ability
to recognize whether photons from different sources can
interfere is therefore an important one. The basic tests use
photon correlation measurements to ascertain the presence of
individual photons and two-photon bunching to verify their
interference. The experimental test of the bunching effect
traditionally employs the Hong-Ou-Mandel interference [1],
in which the two individual photons are mixed on a balanced
beam splitter and the resulting two-mode field is measured
by a pair of photon counters. The bunching manifests as a
lack of coincidence counts: If the coincidence probability is
below one-half, the interference effect is nonclassical, i.e.,
incompatible with the description using a mixture of classical
waves or classical particles. Recent experiments for a wide
range of experimental platforms safely observed low values
of coincidence counts and thus demonstrated this fundamental
nonclassical aspect [2].

For discrete-variable quantum technology these features
are sufficient. However, from the point of view of continuous
variables (CVs) and the more general framework of hybrid
quantum technology [3–6], these experiments quantify only
the particle nature of the interference and ignore the vacuum-
related phase-sensitive aspects [7] of the photon bunched state.
They also avoid the issues of coupling single photons with CV
states, such as mode overlap with the local oscillator. The
full picture of two-photon interference can be obtained by
replacing the photon counters with homodyne detection and
performing a full tomography [8,9]. The reconstructed density
matrix can then be analyzed in order to visualize and evaluate
the interference caused by the indistinguishability. Drawbacks
to this tomographic approach are that it requires a high number
of individual measurements and it cannot be used as a direct
witness.

Tomographic reconstruction is a process combining infor-
mation from many incompatible measurements in order to
obtain quantities that are not measurable directly, such as

off-diagonal elements of the density matrix. The elements of
the reconstructed matrix contain, in principle, full information
about the state. However, the information is practically limited
due to the unavailability of a complete set of measurements
and the need to form prior assumptions about the suitable
Hilbert space of the system [10]. For this reason some
elements, in particular those related to higher Fock num-
bers, are difficult to estimate with sufficient precision. This
may lead to erroneous or indeterminate conclusions, such
as attributing nonclassical properties to the interference of
classical signals. Furthermore, the full information provided
by the costly tomographic process is often not needed. In this
case, use of a specialized and less demanding direct witness
with straightforward statistical error analysis is much more
effective [11].

Two-photon interference leads to a state that, by suitably
conditioning homodyne measurement, can be transformed
into a state with quadrature squeezing [7]. This squeezing,
although not strong enough to be of much use on its own, can
be created neither from classical light nor from noninterfering
photons and is therefore an excellent witness of nonclassical
and coherence properties. It can be also directly measured.
Interestingly, the measurement itself relies only on classical
correlations within the state, without exploiting its entan-
glement [12] or discord [13]. The general witness therefore
requires one further condition: The phase of the initial
states needs to be randomized. This step, while not affecting
single-photon states, cancels the possible false positives. The
full phase-sensitive Hong-Ou-Mandel effect therefore serves
as a directly observable witness simultaneously for both
particle and wavelike aspects of the two-photon interference.
It also offers a much more challenging benchmark against
which new single-photon sources can be tested.

In this paper we introduce a witness for remotely prepared
single-photon states, which summarily assesses their single-
photon nature, indistinguishability, and compatibility with
hybrid processing circuits. The witness relies on observation
of nonclassical quadrature correlations and thus requires
only measuring a single two-quadrature joint probability
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FIG. 1. (a) Conceptual scheme of the witness. The phase randomized (PR) states are mixed on a balanced beam splitter (BS) and two fixed
quadratures are then measured by a pair of homodyne detectors (HD). (b) Experimental setup. Two single-photon states are independently
generated and stored in the memory cavities. After synchronization, they are released at the same time, allowed to interfere on the balanced
beam splitter, and recorded by the pair of homodyne detectors. Here EOM denotes electro-optic modulator, LO local oscillator, and APD
avalanche photodiode.

distribution, which makes it significantly less demanding
than quantum tomography. For demonstration we apply the
witness to a pair of photons individually prepared in timing
synchronization cavities [8].

II. SINGLE-PHOTON WITNESS

In the ideal version of the Hong-Ou-Mandel experiment,
the two single photons indistinguishable in all but a single
degree of freedom are in the initial state |1,1〉 and get mixed
on a balanced beam splitter. This produces an entangled state

|ψ〉 = 1√
2

(|20〉 − eiφ|02〉), (1)

with φ being the relative phase between the two output
modes introduced by the beam splitter. The two resulting
modes are then subjected to intensity measurements by
avalanche photodiodes whose action is described by their
positive-operator-valued measure elements �0 = |0〉〈0| and
�1 = 1 − �0, which provide us with probabilities Pkj =
〈ψ |�k ⊗ �j |ψ〉, k,j = 0,1. For indistinguishable photons
there is a distinct lack of coincidences represented by P11 = 0.

On the other hand, for completely distinguishable photons
the probability of coincident detection is firmly set to P11 =
1/2. The full Hong-Ou-Mandel measurement is realized by
deliberately delaying one of the photons, thus increasing the
distinguishability, and measuring the coincidence rates for
these different settings. The effect is then quantified in terms
of visibility, which is defined as

V = max P11 − min P11

max P11 + min P11
, (2)

where the maximization and minimization are performed
over a set of different delays. For perfectly indistinguishable
(distinguishable) photons the visibility is V = 1(V = 0). The
visibility can be also reduced due to imperfection of the single-
photon states, caused by the presence of vacuum or higher Fock
terms. However, since the vacuum terms do not contribute
towards coincidence rates, only the higher Fock terms lead to

a reduction in visibility. This means that the Hong-Ou-Mandel
effect is a good indicator of distinguishability of single
photons, but it provides limited insight into their quality.
Another shortcoming of the Hong-Ou-Mandel effect is related
to the technological aspect of the employed single-photon
detectors. These particle detectors have a very broad detection
spectrum incompatible with the much narrower spectrum of
continuous homodyne detectors, which play a crucial role
in CV quantum information processing with light [3]. This
discrepancy can be removed by using optical filtering, but this
comes at the cost of detection efficiency and alteration of the
photon statistics. Another issue is the fundamental identity of
the single-photon detectors as intensity detectors. As such,
the measurement is insensitive to the vacuum and cannot
reveal the wave portion of the interference, the relative phase
between the modes, related to the phase-sensitive correlations
between the field quadratures. As a consequence, with the
particle detectors the state (1) cannot be differentiated from a
completely mixed state (|20〉〈20| + |02〉〈02|)/2. Needless to
say, in CV and hybrid quantum information processing this
distinction is quite crucial.

We are therefore looking for a strong unifying witness ca-
pable of verifying the quality of single-photon states as well as
their indistinguishability and suitability for hybrid processing
[4,5]. We also want to observe the interference effect directly,
without the need to consider different measurement bases and
settings, and subsequent reconstruction of the state’s density
matrix.

All of these requirements are reconciled in a three-step
procedure illustrated in Fig. 1(a), in which the two single-
photon states are first phase randomized, then they interfere on
a balanced beam splitter, and finally they are subjected to the
joint measurement of phase-correlated quadrature operators
X1(θ1) and X2(θ2), where Xj (θ ) = Xj cos θ + Pj sin θ , with
j = 1,2. Here Xj and Pj obey the canonical commutation
relation [Xj,Pj ] = i. Because of the phase insensitivity of
initial single-photon states, a common component of phases
has no significance. Hence, quadrature operators can be
expressed only with the differential component �θ = θ1 − θ2
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as X1(�θ ) and X2(0). Let us look at the ideal scenario
with the state (1) and consider a homodyne measurement
of mode 2 yielding a value x2. This measurement projects
the state of the remaining mode 1 into a state proportional to
eiφ〈x2|2〉|0〉 − 〈x2|0〉|2〉. This state has zero mean values of the
quadrature operators X1 and P1. The remarkable thing is that
by choosing some particular values of x2, the state in mode
1 is projected into a squeezed state, whose second moment
at a certain measurement angle shows a value less than 1/2
[7,14]. The witness, confirming that state ρ was obtained by
the interference of two phase-insensitive single-photon states
on a balanced beam splitter, can be therefore formulated as

E
[
X2

1(�θ )
∣∣X2(0) = x2

] = Tr
[
X2

1(�θ ) ⊗ |x2〉〈x2|ρ
]

Tr[1 ⊗ |x2〉〈x2|ρ]
<

1

2
,

(3)

where E[·|C] represents the conditional mean value of an
operator when condition C is satisfied. The phase �θsq that
gives the minimum second moment is tied to the phase of
the superposition φ as �θsq = −φ/2. It is important that φ

is arbitrarily controllable by classical phase locking, so �θsq

is known a priori and can be set to an arbitrary value. The
procedure therefore requires measuring the statistics of only a
single pair of quadrature operators, which makes it much more
practical and economical than the full tomography. Witness (3)
is never satisfied when the states are distinguishable, classical,
or incompatible with the CV part of the experiment. However,
the presence of other Fock components can diminish the
squeezing and change the range of conditioning values x2 that
reveal it. On the other hand, when the squeezing threshold is
reduced below the vacuum level, the witness becomes stricter
until eventually it can be satisfied only by pure perfectly
interfering single-photon states. This is discussed in greater
detail in the Appendix.

The conditioning on x2 is related to the generalized theory of
squeezing extraction presented in Ref. [7], but there are some
interesting distinctions. Due to the ideally vanishing nature of
the first moments, the condition can be specified with help of
the second noncentral moment, which makes it unsatisfiable by
a lone single photon [15]. This is in contrast to the observing
squeezing of the conditional central moment, the variance,
which can be achieved even for a single photon interacting
with the vacuum and may therefore lead to false positives.
However, the conditional squeezing can be considered as a
witness for the quality of single photons [7]. For example,
an imperfect single-photon state represented by the density
operator ρ = η|1〉〈1| + (1 − η)|0〉〈0| can be confirmed as
nonclassical for an arbitrary positive value of η. The method
demonstrates the phase-sensitive continuous-variable nature
of the correlations in photon anticorrelation experiments. It
is also interesting to point out that when the squeezing is
replaced by another nonclassicality witness employing only a
single quadrature measurement, such as the one proposed in
Ref. [16], no conditional nonclassicality can be detected.

III. EXPERIMENTAL TEST

The experimental setup for the test of the phase-sensitive
Hong-Ou-Mandel effect for two single-photon states is based
on our previous experiment reported in Ref. [8] and it is

(b)

-5 -4 -3 -2 -1 0 1 2 3 4 5 
-5

-4

-3

-2

-1

0 

1 

2 

3 

4 

5 

(a)

-5

-4

-3

-2

-1

0 

1 

2 

3 

4 

5 

FIG. 2. Experimentally measured quadrature distribution of the
state after interference with �θ = �θsq. (a) Joint probability distri-
bution P (X1,X2). (b) Normalized quadrature distribution P (X1). An
occurrence rate of X1 with the window 1.9 � |X2| � 2.5 is shown
in histogram. Lines are Gaussian distributions with the variance of
conditioned P (X1) (red solid line) and that of vacuum fluctuation for
reference (blue dashed line), respectively.

shown in Fig. 1(b). Each of the two photon sources is based
on the heralded scheme with parametric down-conversion
contained in an optical cavity. Photon pairs are generated
from the continuous-wave pump light at 430 nm at random
times. One photon of the pair immediately leaves the cavity
and is detected by an avalanche photodiode, thus heralding
the presence of another 860-nm photon stored in the cavity. A
technique involving concatenated shutter cavity [17,18] can be
then used to release the second photon at a desired time. This
allows timing synchronization of the two generated photons
and enables their interference on the balanced beam splitter.
With this technique, the simultaneous emission events occur
20 times in a second with 400-ns synchronization window
and we gathered quadrature data of 13 037 events. Since the
single-photon states are generated independently, their phase
is random and needs no further randomization. The state after
interference is measured by phase-sensitive homodyne detec-
tion in both output modes of the balanced beam splitter: One
mode is used for conditioning to generate squeezing and the
other mode is used for the verification of squeezing in the
conditioned state. The relative phase between a local oscillator
and the output mode at both homodyne detections, and the
relative phase of two local oscillators that is equivalent to �θ

are actively stabilized. The quantum efficiency of homodyne
detectors and the visibility between a signal beam and the local
oscillator are both more than 99%. Any correction of losses is
not applied to the results below.

Figure 2(a) shows the joint measured distribution of
quadratures X1 and X2 of the two modes emerging from the
beam splitter with �θ = �θsq. The quadratures were locked
against each other, but their relation to the outside reference
varied over time. This effectively resulted in a statistics that is
equivalent to measurement without an outside phase reference.
We will therefore omit the phase dependence from now on.
We can see that the quadrature data are distinctively correlated
in a manner consistent with the target state. In accordance
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FIG. 3. Conditioned second moment Emin,�[X2
1] (red line) and

its upper confidence band (green line) relative to the width of the
postselection interval �. The position of the conditioning interval
given by the measured value of X2 was optimized over in order to
obtain minimal certifiable variance given by the upper confidence
interval.

with the proposed witness, we are looking for a quantitative
indicator of the Hong-Ou-Mandel coherence in the form of the
second conditional moment E[X2

1|X2 = x2]. The theory asks
for conditioning on a single measurement result. Since this is
impossible, we have relaxed the requirement for the condition
and accepted situations in which the value of quadrature X2

fell into a bin of width �, x2 − �/2 � X2 � x2 + �/2. Due
to the symmetrical nature of the distribution, we also used both
positive and negative values in the postselection. An example
of the conditional quadrature distribution of X1 is shown in
Fig. 2(b). The conditioning window, denoted by the set B,
was set to 1.9 � |X2| � 2.5 and it picked 1011 of the initial
13 037 data points. The conditional variance was found to
be E[X2

1|X2 ∈ B] = 0.42, which is smaller than the vacuum
fluctuation variance of 0.5.

Let us now discuss the results in more detail, giving more
attention to possible statistical errors, and make sure that
the observed squeezing is significant. For that we need to
construct the confidence band for the estimated variance.
Under the assumption that the conditional distributions are
approximately Gaussian, we used the Monte Carlo method
to simulate 1000 runs of the experiment, estimated their mo-
ments, and evaluated their statistics. The standard deviation of
the estimated variances depends on the number of data points
and therefore on the position and width of the postselection
interval. A narrow interval generally yields the lowest possible
moment values, but they come at the cost of a low number of
data points and, consequently, less certainty about the validity
of the result. The best certifiable violation is obtained when the
upper boundary of the confidence band reaches its minimum
value. Figure 3 shows the second moment with its upper
confidence band estimated from the measured data. For all
considered values of � we have optimized over the values x2

marking the center of the interval to obtain the minimum of
the upper confidence band boundary. The plotted moment can
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FIG. 4. Conditional second moment E[X2
1|X2 ∈ B(x2)], where

B(x2) is the set of values satisfying x2 − �/2 � |X2| � x2 + �/2.
The width of the postselection interval was chosen to be � = 0.6. The
blue dashed line marks the theoretical prediction for the interference
of two ideal single-photon states. The red solid line shows the predic-
tion for interference of two imperfect photons produced by the
cavities. Red dots represent experimental data with the light red zone
marking the 3σ confidence band. The inset shows detailed behavior
in the area with the highest certifiable squeezing.

therefore be expressed as

Emin,�

[
X2

1

] = min
x2

{
E

[
X2

1

∣∣∣∣x2 − �

2
< |X2| < x2 + �

2

]}
.

(4)

We have obtained the lowest certifiable variance for � = 0.6.
The conditional variances for this scenario are shown in

Fig. 4. We can see that the measured data closely follow
the curve predicted from knowledge of the two independent
single-photon states, which was obtained by their individual
tomographic reconstructions [8]. This shows that the amount
of squeezing is limited mainly by the undesired vacuum
component of the single photons and not their coherence.
Furthermore, the squeezing is observable even if we take the
three-standard-deviation-wide confidence band into account.
This confirms that the squeezing is not a statical artifact and
demonstrates both the nonclassical nature of the two initial
single-photon states and their mutual coherence. This first
application of the proposed witness also shows its sensitivity
to small imperfection of these components. Note that the
visibility of the traditional Hong-Ou-Mandel interference
estimated from the tomography data would be V = 0.7 in
our experiment.

IV. SUMMARY

We have suggested a phase-sensitive Hong-Ou-Mandel
effect as a witness for recognizing the presence and non-
classicality of individual photons, their ability to quantum
mechanically interfere, and their compatibility with hybrid
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quantum processing [3]. These aspects are detected jointly; a
lack of any one of them will lead to diminishing performance
and separating them is not straightforward. However, since
all of these properties are needed for hybrid processing,
the ability to test them at the same time is highly practical. The
suggested witness requires joint measurement of only a single
pair of commuting quadrature operators. There is no need for
tomography and sets of incompatible measurements, which
reduces the demands on the length of the measurement by
more than an order of magnitude. The employed measurement
does not rely on entanglement [12] or discord [13]. We have
applied the witness to the pair of on-demand generated photons
and demonstrated both their nonclassical nature and their
mutual coherence. The witness can be directly applied to
other experimental platforms where generation of interfering
Fock states plays an important role, such as atomic ensembles
[19], optomechanics [20,21], and superconducting circuits
[22,23].
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APPENDIX

The proposed witness takes advantage of nonclassical
properties of the interfering quantum states. As such, higher
Fock components of the initial states, which are nonclassical
on their own, can affect the outcome. Since we consider
phase randomized states with a density matrix diagonal in
the Fock representation, ρ1,2 = ∑

k Pk|k〉〈k|, we can analyze
the effect by looking at the witness value for initial states
|m,n〉, because the final witness value will be obtained as
their linear combination. The conditional second moments for
states |m,n〉, where m,n = 0,1,2, are displayed in Fig. 5. We
can see that states |1,0〉 and |2,0〉 never lead to squeezing and
numerics confirmed this behavior for states up to |10,0〉. This
demonstrates that even when the two states are imperfect, their
coherence is an absolutely essential condition for observation
of any squeezing.

We can also see that apart from the state |1,1〉, squeezing
can be also obtained for states |1,2〉 and |2,2〉. However,
the minimum conditioning value for which the squeezing is
observable is larger than that of the state |1,1〉. Combinations
of higher Fock terms have not been plotted, but the trend
remains the same: For some states squeezing can be observed,
but it is always for progressively larger values of x2. This can
be used to derive an even stronger form of the witness, which
eliminates contributions of these higher terms. For example,
squeezing found for conditioning value 1.23 < x2 < 1.75 can
only be a consequence of the state |1,1〉.

For an explicit demonstration let us consider a subset of
states with at most two photons. Such states have a density
matrix ρ1 = ρ2 = p0|0〉〈0|+p1|1〉〈1| + (1−p0−p1)|2〉〈2|.
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FIG. 5. Conditional second moment for different input states.

Figure 6 shows the range of parameters in which squeezing
can be detected for two different conditioning values. Here
x2 = 1.5 corresponds to the strong ideal witness, which
detects only single-photon contributions, while x2 = 2.2 is
the value that was used in the experimental implementation.
We can see that the first case restrictively singles out only
states with a high single-photon component, while the second
one allows also for a two-photon contribution. However, the
second one is also more forgiving when it comes to losses
causing a higher proportion of the vacuum, which is the
feature we can take advantage of if we admit the realistic
experimental assumption that p2 � 1.

The amount of observed squeezing can be used for quan-
titative statements about the quality of the single photons and
their distinguishability. Lowering the required moment value
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FIG. 6. Range of parameters for states ρ1 =ρ2 =p0|0〉〈0| + p1|1〉
〈1| + p2|2〉〈2|, in which squeezing can be witnessed. For the
conditioning value x2 = 2.2 squeezing can be observed in both the
light blue and dark red areas. For the conditioning value x2 = 1.5
squeezing can be observed only in the dark red area.
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reduces the range of parameters for which the behavior can
be witnessed. A sufficiently low value then detects only pure
perfectly interfering single-photon states. Alternatively, larger
observed squeezing allows for wider confidence intervals and
thus for more valid statements.

In summary, observation of squeezing always guarantees
that the two states are nonclassical and coherent. Observation
of squeezing for particular values of x2 can provide further
information and even verify the presence of specific Fock
components.
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Quantum-State Reconstruction by Maximizing Likelihood and
Entropy, Phys. Rev. Lett. 107, 020404 (2011).

[11] A. K. Ekert, C. M. Alves, D. K. L. Oi, M. Horodecki, P.
Horodecki, and L. C. Kwek, Direct Estimations of Linear
and Nonlinear Functionals of a Quantum State, Phys. Rev.
Lett. 88, 217901 (2002); R. Filip, Overlap and entanglement-
witness measurements, Phys. Rev. A 65, 062320 (2002);
K. L. Pregnell, Measuring Nonlinear Functionals of Quan-
tum Harmonic Oscillator States, Phys. Rev. Lett. 96, 060501
(2006).

[12] R. Horodecki, P. Horodecki, M. Horodecki, and K.
Horodecki, Quantum entanglement, Rev. Mod. Phys. 81, 865
(2009).

[13] K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral,
The classical-quantum boundary for correlations: Discord and
related measures, Rev. Mod. Phys. 84, 1655 (2012).

[14] For example, for θ = 0 conditioning x2 = √
2 produces state

(3|0〉 − √
2|2〉)/√11 with 〈X2〉 = 7/22 < 0.5.

[15] The single photon divided on a beam splitter and conditioned by
homodyne detection can be always expressed as c0|0〉 + c1|1〉. In
this state, 〈X2〉 = 0.5 + |c1|2 and the moment is never squeezed.

[16] W. Vogel, Nonclassical States: An Observable Criterion,
Phys. Rev. Lett. 84, 1849 (2000).

[17] J. Yoshikawa, K. Makino, S. Kurata, P. van Loock, and
A. Furusawa, Creation, Storage, and On-Demand Release of
Optical Quantum States with a Negative Wigner Function,
Phys. Rev. X 3, 041028 (2013).

[18] J. Yoshikawa, K. Makino, and A. Furusawa, in Engineering the
Atom-Photon Interaction, edited by A. Predojević and M. W.
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