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Purification of photon subtraction from continuous squeezed light by filtering
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Photon subtraction from squeezed states is a powerful scheme to create good approximation of so-called
Schrödinger cat states. However, conventional continuous-wave-based methods actually involve some impurity
in squeezing of localized wave packets, even in the ideal case of no optical losses. Here, we theoretically
discuss this impurity by introducing mode match of squeezing. Furthermore, here we propose a method to
remove this impurity by filtering the photon-subtraction field. Our method in principle enables creation of pure
photon-subtracted squeezed states, which was not possible with conventional methods.
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I. INTRODUCTION

Coherent states |α〉 are the quantum states most close to
the classical waves with complex amplitude α and cheap
resources available from laser light. However, when they are
superposed as |α〉 + eiθ |−α〉, they become highly nonclas-
sical, non-Gaussian states, often referred to as Schrödinger
cat states. Note that the normalization factor is ignored here
and in the following when not necessary. Coherent-state
superpositions (CSSs) c+ |α〉 + c− |−α〉 are one of promising
implementations of qubits, enabling quantum computation [1].
In addition, measurements in some CSS bases can provide
better discrimination of coherent states [2], which can boost
capacities of classical communication.

Although it is currently hard to prepare general CSS
qubits with large amplitude as traveling light wave packets,
it is known that photon-subtracted squeezed states well
approximate plus or minus cat states |α〉 ± |−α〉 when the
amplitude |α| is not large (typically |α| � 1.2) [3,4]. Based
on this theory, photon-subtraction experiments are conducted:
initially, one-photon subtraction is succeeded by using a pulsed
laser [5], and then also by using a continuous wave (CW)
laser [6,7]. Later, two-photon subtraction [8] and three-photon
subtraction [9] are also successfully demonstrated. Starting
from a squeezed vacuum state which is superposition of
even-number states, subtraction of an odd number of photons
results in superposition of odd-number states approximating a
minus cat state, while subtraction of an even number of photons
results in superposition of even-number states approximating
a plus cat state. Furthermore, the photon-subtraction scheme
is extended to generation of parity qubits [10]. The amplitude
of cat states can be enlarged with conditional methods [4,11].
Cat states are resources for teleamplification of coherent states
[12]. Hybridization of coherent-state qubits and number-state
qubits is also demonstrated [13,14].

In particular, approximative minus cat states obtained by
one-photon subtraction are actually squeezed single-photon
states, having a negative region around the origin of the
Wigner function. Negative regions in the Wigner function are a
clear evidence of strong nonclassicality of the quantum states.
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However, in real experiments, optical losses contaminate
the odd parity (P2k = 0 for all k ∈ N) of the minus cat
states, degrading the negative value at the origin W (0,0) =
(1/π )

∑∞
k=0(P2k − P2k+1) from the ideal −1/π . Here, Pn is

the n-photon component of a single-mode quantum state in
a given wave-packet mode. The best negativities (without
correction of any losses) of about −0.17 of minus cat states are
demonstrated with the CW scheme and utilized as input states
of a quantum teleporter [15] or a squeezing gate [16]. Based
on these successes, we concentrate on the CW scheme in this
paper. An advantage of the CW scheme is high interference
visibilities of cat states with local oscillators of homodyne
detection for quantum tomographic characterization.

Photon subtraction is a conditional, nonunitary operation,
achieved by tapping a small portion of the initial state with
an asymmetric beam splitter and measuring it with a photon
detector, as explained in Sec. II. When a photon is detected,
the photon subtraction is succeeded, and the heralded photon-
subtracted state exists in some wave packet, localized in the
time domain around the heralding signal [17]. However, here
we pay attention to the fact that the initial squeezed vacuum
state in such a wave packet is generally in a mixed state,
owing to the nonflat spectrum of squeezing produced by an
optical parametric oscillator (OPO). This impurity of the initial
squeezed states would remain as impurity of the heralded cat
states in some form [18].

Here, we theoretically show that the above mechanism
indeed causes some inefficiency of heralded cat states in the
ordinary CW methods. Furthermore, we also show that this
inherent inefficiency can be arbitrarily suppressed by inserting
a filter to extract a flat region of the spectrum before the
photon detection. That is, here we propose a method potentially
reaches to ideal photon-subtracted squeezed states in the CW
regime, which are not obtainable with conventional methods.
The schematic optical setup of our method is shown in
Fig. 1. Note that previous demonstrations of photon subtraction
with CW methods are already using filter cavities, but their
bandwidths are wider than those of OPOs, in order to utilize
the raw correlations of photons produced by the OPO cavities
as the wave packets of heralded cat states. However, our
calculations show that it is more advantageous to engineer the
wave packets of heralded cat states by filtering the subtraction
path. As a side effect, the filtering by a cavity deforms
the longitudinal mode function of the heralded cat states to
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FIG. 1. Optical setup of our method inserting a filter cavity in
the photon-subtraction path. Unlike conventional methods, by taking
the bandwidth of the filter � narrower than that of the OPO γ , the
resulting photon-subtracted squeezed states become purer.

an exponentially rising function, which is advantageous for
real-time homodyne measurements [19]. Here, we only discuss
the case of one-photon subtraction, but the same mechanism
works also for multiphoton subtraction.

In Sec. II, we briefly summarize basic equations of photon
subtraction in a single-mode regime. In Sec. III, we deal with
squeezed states of a beam (longitudinally infinite-mode states),
with a general two-photon correlation, and photon subtraction
from them. Impure squeezing of a wave packet is discussed,
by introducing the mode match of squeezing. In Sec. IV, we
apply our theory to the specific correlation created by a typical
OPO. In Sec. V, we show the impurity is arbitrarily suppressed
by a filter cavity in the photon-subtraction path. In Sec. VI, we
summarize the paper, and make additional observations.

II. BASICS OF PHOTON SUBTRACTION

In this section, we summarize basic descriptions of one-
photon subtraction in the single-mode regime. Photon sub-
traction, which is application of the annihilation operator â

to a quantum state, is approximated by beam-splitter tapping
followed by a photon detection, as we show here.

We suppose the initial pure single-mode state to be
|ψ〉 = ∑∞

n=0 cn |n〉 which is expanded with respect to the
photon-number eigenstates |n〉 := (1/

√
n!)â†n |0〉. Here, â† is

the creation operator, satisfying [â,â†] = 1. The beam-splitter
unitary operator is denoted by B̂(R), whose reflectivity R is
assumed to be small for the purpose of tapping. Expressing
the ancillary tapping mode with the subscript “anc,”

B̂(R) |ψ〉 ⊗ |0〉anc

=
∞∑

n=0

cn[B̂(R)â†B̂†(R)]n√
n!

B̂(R) |0〉 ⊗ |0〉anc

=
∞∑

n=0

cn(
√

1 − Râ† + √
Râ

†
anc)n√

n!
|0〉 ⊗ |0〉anc

=
∞∑

n=0

cn(
√

1 − R)n |n〉 ⊗ |0〉anc

+
√

R

∞∑
n=1

cn(
√

1 − R)n−1√n |n − 1〉 ⊗ |1〉anc + O(R).

(1)

Here, the invariance of vacuum states under beam-splitter
operations B̂(R) |0〉 ⊗ |0〉anc = |0〉 ⊗ |0〉anc is used. Neglect-
ing the noiseless attenuation terms (

√
1 − R)n [20], which

can arbitrarily approach the identity at the limit of a small
reflectivity R → 0, the conditional state heralded by one-
photon detection is

anc 〈1| B̂(R → 0) |ψ〉 ⊗ |0〉anc

=
√

R

∞∑
n=1

cn

√
n |n − 1〉 ∝ â |ψ〉 . (2)

Therefore, the above procedure mathematically approaches to
the ideal photon subtraction which is a photon-annihilation
operation. Note that the conditional success is quantum
mechanically inevitable because of the nonunitarity of the
annihilation operator. However, wait-until-success methods,
implemented with some quantum memories, can overcome
this probabilistic nature.

Cat-state generation is achieved by applying this photon-
subtraction process to a squeezed vacuum state. Single-mode
squeezing operator with a squeezing parameter r is defined as

Ŝ(r) = exp
[

1
2 (râ†â† − r∗ââ)

]
, (3)

where the superscript ∗ denotes the complex conjugation.
The Bogoliubov transformation by the squeezing operator
is Ŝ†(r)âŜ(r) = â cosh |r| + â† exp(2iθ ) sinh |r|, where θ :=
arg(r)/2 expresses the antisqueezing direction. It is worth
noting that a photon-subtracted squeezed state is equivalent
to a squeezed single-photon state, from the following relation:

âŜ(r) |0〉 = Ŝ(r)Ŝ†(r)âŜ(r) |0〉
= Ŝ(r)[â cosh |r| + â† exp(2iθ ) sinh |r|] |0〉
∝ Ŝ(r)â† |0〉 . (4)

This squeezed single-photon state well approximates a minus
cat state with a small amplitude [4].

However, in real situations, we often have to deal with
multimode quantum states, with some entanglement among
modes. In the following sections, we deal with a squeezed
vacuum state in a beam with time-translation symmetry (in
a rotating frame), which is thus essentially multimode in the
longitudinal direction.

III. IMPURE SQUEEZING OF WAVE PACKET

A. Definition of a wave packet

From here, we deal with a light beam with the longitudinal
coordinate t . The infinite-mode vacuum state of a beam |∅〉,
distinguished from a single-mode vacuum state |0〉, satisfies
â(t) |∅〉 = 0 for all t . The instantaneous creation and annihi-
lation operators â†(t) and â(t) satisfy [â(t),â†(t ′)] = δ(t − t ′),
where δ(t) is the Dirac delta function. They have the Fourier
counterparts

ˆ̃a
†
(ω) = 1√

2π

∫
â†(t) exp(−iωt)dt, (5a)

ˆ̃a(ω) = 1√
2π

∫
â(t) exp(iωt)dt, (5b)
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with [ ˆ̃a(ω), ˆ̃a
†
(ω′)] = δ(ω − ω′) [21]. We take a rotating frame

so that the degenerate frequency of squeezing becomes ω = 0.
Quadrature operators with respect to a phase θ are defined

as

ˆ̃x
(θ)

(ω) :=
ˆ̃a(ω)e−iθ + ˆ̃a

†
(ω)eiθ

√
2

,

ˆ̃p
(θ)

(ω) :=
ˆ̃a(ω)e−iθ − ˆ̃a

†
(ω)eiθ

√
2i

, (6)

and the same definition applies to the time domain x̂(θ)(t) and
p̂(θ)(t). We omit the superscript phase (θ ) when θ = 0.

We define a creation operator and an annihilation operator
associated with a wave-packet mode function g(t) as

â†
g :=

∫
g(t)â†(t)dt =

∫
g̃(ω) ˆ̃a

†
(ω)dω, (7a)

âg :=
∫

g∗(t)â(t)dt =
∫

g̃∗(ω) ˆ̃a(ω)dω, (7b)

where the Fourier pair of a complex function is defined as

f̃ (ω) := 1√
2π

∫
f (t) exp(iωt)dt. (8)

The bosonic commutation relation [âgk
,â

†
g


] = δk
 with the
Kronecker delta δk
 is equivalent to the orthonormalization
condition of the wave-packet mode functions

〈gk,g
〉 :=
∫

g∗
k (t)g
(t)dt =

∫
g̃∗

k (ω)̃g
(ω)dω = δk
. (9)

Here, the inner product between two functions f (t) and f ′(t)
is expressed by 〈f,f ′〉. The norm of a function f (t) is defined
as ‖f ‖ := √〈f,f 〉. We express normalization of a function
f (t) or f̃ (ω) as

N (f )(t) := f (t)

‖f ‖ , N (f̃ )(ω) := f̃ (ω)

‖f ‖ . (10)

We assume the normalization for the wave-packet mode
function g(t) = N (g)(t).

The corresponding quadrature operators are x̂g := [âg +
â
†
g]/

√
2 and p̂g := [âg − â

†
g]/(

√
2i). In particular, if we take

g(t) as a real function (remember that we are in the rotating
frame), thus g̃(−ω) = g̃∗(ω), in this case, x̂g = ∫

g(t)x̂(t)dt

and p̂g = ∫
g(t)p̂(t)dt .

B. Continuous squeezing operator

In general, a unitary squeezing operator on a beam can be
expressed in the form of

Ŝr = exp
[

1
2 (P̂ †

r − P̂r )
]
, (11)

with photon-pair creation and annihilation operators P̂
†
r and

P̂r , defined by using a photon-pair correlation function r(t1,t2)
as

P̂ †
r :=

∫∫
r(t1,t2)â†(t1)â†(t2)dt1dt2. (12)

The continuous pumping appears as time-translation sym-
metry r(t1,t2) = r(t1 − t2) in the rotating frame. Under this
time-translation symmetry, the upper and lower sidebands
at each frequency are exclusively coupled by the squeezing
operator, as

P̂ †
r =

∫∫
r(t1 − t2)â†(t1)â†(t2)dt1dt2

=
∫∫

r̃(ω) ˆ̃a
†
(ω) ˆ̃a

†
(−ω)dω. (13)

Note that r̃(ω) corresponds to the squeezing parameter at each
frequency. From the symmetry between â†(t1) and â†(t2), the
correlation function has the time-reversal symmetry r(t) =
r(−t), which leads to r̃(ω) = r̃(−ω). The squeezing operator
makes a Bogoliubov transformation

Ŝ†
r

ˆ̃a(ω)Ŝr = ˆ̃a(ω) cosh |̃r(ω)|
+ ˆ̃a

†
(−ω) exp[2iθ (ω)] sinh |̃r(ω)|, (14)

with θ (ω) := arg[̃r(ω)]/2, which expresses pure squeezing in
each sideband pair:

Ŝ†
r

[
ˆ̃x

(θ(ω))
(ω) + ˆ̃x

(θ(ω))
(−ω)

]
Ŝr

= [
ˆ̃x

(θ(ω))
(ω) + ˆ̃x

(θ(ω))
(−ω)

]
exp[|̃r(ω)|], (15a)

Ŝ†
r

[
ˆ̃p

(θ(ω))
(ω) + ˆ̃p

(θ(ω))
(−ω)

]
Ŝr

= [
ˆ̃p

(θ(ω))
(ω) + ˆ̃p

(θ(ω))
(−ω)

]
exp[−|̃r(ω)|]. (15b)

Conversely, for pure sideband squeezing, given an an-
tisqueezing angle θ (ω) at each frequency, and given an
antisqueezing spectrum V (+)(ω) and a squeezing spectrum
V (−)(ω), the squeezing parameter r̃(ω) is uniquely determined
at each frequency, and thereby the corresponding squeezing
operator Ŝr is obtained in the form of Eqs. (11) and (13).
Here, V (+)(ω) and V (−)(ω) are variances of the antisqueezed
quadrature and the squeezed quadrature at each frequency,
relative to the quadrature variance of a vacuum state. For the
case of pure squeezing, V (+)(ω) = 1/V (−)(ω) = exp(2|̃r(ω)|).

C. Photon subtraction

We suppose the timing of the photon subtraction to be
t = 0 without loss of generality. The whole state after the
photon subtraction is, by using the Bogoliubov transformation
in Eq. (14), the time-reversal symmetry r̃(ω) = r̃(−ω), and
ˆ̃a(ω) |∅〉 = 0:

â(0)Ŝr |∅〉 =
[∫

ˆ̃a(ω)dω

]
Ŝr |∅〉

= Ŝr

{∫
ˆ̃a
†
(ω) exp[2iθ (ω)] sinh |̃r(ω)|dω

}
|∅〉 .

(16)

In particular, when the squeezing is weak, sinh |̃r(ω)| ≈ |̃r(ω)|,
and the state approaches to

â(0)Ŝr |∅〉 ≈ Ŝr

[∫
r̃(ω) ˆ̃a

†
(ω)dω

]
|∅〉 ∝ Ŝr â

†
N(r) |∅〉 . (17)
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Therefore, the heralded cat state is equivalent to a single-
photon state in a wave-packet mode close to N (r)(t) exposed
to longitudinally multimode squeezing Ŝr . The deviation of
the wave-packet mode from N (r)(t) has order of O(|̃r(ω)|3),
which can be checked from the Taylor expansion of sinh |̃r(ω)|.
That is, the same order of contribution as five-photon terms.

We discuss below that squeezing with a nonflat spectrum
operating on such a wave packet induces some impurity [18]
by making entanglement with orthogonal modes.

D. Natural impurity in wave-packet squeezing

If a continuous squeezing process involves no optical losses,
the squeezing at each frequency can be pure, expressed by a
Bogoliubov transformation in Eq. (14). However, even in the
case of pure sideband squeezing confirmed by the minimum
uncertainty V (+)(ω)V (−)(ω) = 1, this minimum uncertainty is
not preserved in general for the squeezing with respect to a
wave packet g(t). In order to discuss this, for simplicity we
consider the case the wave-packet mode function g(t) is a real
function. Furthermore, we suppose r̃(ω) ∈ R+ for all ω, and
under this condition ˆ̃x(ω) + ˆ̃x(−ω) quadrature is antisqueezed
and ˆ̃p(ω) + ˆ̃p(−ω) quadrature is squeezed. The quadrature
variance of the wave-packet mode g(t) is

〈∅| (Ŝ†
r x̂gŜr

)2 |∅〉 = 1

2

∫
|̃g(ω)|2V (+)(ω)dω := 1

2
V (+)

g ,

(18a)

〈∅| (Ŝ†
r p̂gŜr

)2 |∅〉 = 1

2

∫
|̃g(ω)|2V (−)(ω)dω := 1

2
V (−)

g .

(18b)

Note that
∫ |̃g(ω)|2dω = ‖g‖2 = 1, and that 1

2 is the quadra-
ture variance of a vacuum state. Apparently, V (+)

g V (−)
g > 1

unless the spectra in the relevant domain are flat. This can be
shown by using the Cauchy-Schwarz inequality∫

|̃g(ω)|2V (+)(ω)dω

∫
|̃g(ω′)|2V (−)(ω′)dω′

�
∣∣∣∣∫ |̃g(ω)|2

√
V (+)(ω)V (−)(ω)dω

∣∣∣∣2

� ‖g‖4, (19)

where the first inequality becomes the equality if and only
if g̃(ω)

√
V (+)(ω) ∝ g̃(ω)

√
V (−)(ω) which is possible for the

pure sideband squeezing only when the spectra are flat for
nonzero g̃(ω).

E. Decomposition of a photon-pair operator and mode match

In order to understand the impurity, here we introduce
the mode match of squeezing, associated with a pair-creation
operator in Eq. (13), with a wave-packet mode g(t). We use
the following relation:

[âg,P̂
†
r ] = 2

∫
g∗(τ )r(t − τ )â†(t)dτ dt

= 2
∫

(g∗ ∗ r)(t)â†(t)dτ dt

= 2‖g∗ ∗ r‖â†
N(g∗∗r), (20)

where (f ∗ f ′)(t) denotes the convolution of f (t) and f ′(t).
Here, the coefficient 2 comes from the symmetry between
â†(t1) and â†(t2). Furthermore, we can decompose N (g∗ ∗ r)(t)
into a portion along g(t) and a portion orthogonal to it via the
Gram-Schmidt orthogonalization

N (g∗ ∗ r)(t) = 〈g,N (g∗ ∗ r)〉 g(t)

+
√

1 − | 〈g,N (g∗ ∗ r)〉 |2g⊥(t), (21)

where g⊥(t) is a normalized function satisfying 〈g,g⊥〉 = 0.
The creation operator â

†
N(g∗∗r) is decomposed accordingly,

â
†
N(g∗∗r) = 〈g,N (g∗ ∗ r)〉 â†

g +
√

1 − |〈g,N (g∗ ∗ r)〉|2â†
g⊥ ,

(22)

and from above, we have derived

P̂ †
r = 〈g,g∗ ∗ r〉â†2

g + 2
√

‖g∗ ∗ r‖2 − |〈g,g∗ ∗ r〉|2â†
gâ

†
g⊥

+ (other irrelevant terms). (23)

Here, “irrelevant terms” means that they commute with âg , but
does not mean that they commute with ag⊥ . In fact, taking
g0(t) = g(t) and g1(t) = g⊥(t), and repeating the Gram-
Schmidt orthogonalization of (g∗

k ∗ r)(t) to obtain gk+1(t), we
reach the form

P̂ †
r =

∑
k

(
ck,kâ

†2
gk

+ 2ck,k+1â
†
gk

â†
gk+1

) + P̂
†
r\[g], (24)

with a set of orthonormal functions {gk(t)}k∈N and a set
of coefficients {ck,k,ck,k+1}k∈N, where P̂

†
r\[g] expresses the

remaining part of the pair-creation operator in modes totally
disconnected from g(t), if there is.

Therefore, if N (g∗ ∗ r)(t) is close to g(t) (up to the
global phase), â

†2
g terms are dominant compared with 2â

†
gâ

†
g⊥

terms, which means the squeezing is almost pure. Otherwise,
2â

†
gâ

†
g⊥ terms become non-negligible, and photons are not

always generated in pairs in the wave packet g(t) but some
pairs make entanglement with an orthogonal mode. The ratio
between squared coefficients (corresponding to probability) of
â
†2
g (single-mode squeezing) and 2â

†
gâ

†
g⊥ (two-mode squeez-

ing) is |cg,g|2 : |cg,g⊥|2 = |〈g,N (g∗ ∗ r)〉|2 : [1 − |〈g,N (g∗ ∗
r)〉|2] and, thus, in this sense, we define

M[g,r] := |〈N (g),N (g∗ ∗ r)〉|2 (25)

as the mode-matching rate of the squeezing Ŝr with respect
to the wave-packet mode N (g)(t). [Here, the assumption of
normalized g(t) is forgotten and the normalization is explicitly
included in the definition for later convenience.]

The above mode-matching condition, M[g,r] being closer
to 1, is decomposed into two parts: first, g(t) ≈ eiϕg∗(t) with
a fixed phase ϕ, and second, the convolution with r(t) does
not largely deform g(t). Note that a sufficient condition of
the first condition is the wave-packet function g(t) being a
real function. The first condition means that g(t) takes the
upper and lower sidebands symmetrically, which is checked
by considering the relation with the Fourier counterpart g̃(ω).
This is related to the energy conservation law among pump,
signal, and idler photons. From the second condition, we can
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expect that a narrower bandwidth of the wave packet g(t) is
more advantageous to increase the mode match.

IV. OPTICAL PARAMETRIC OSCILLATOR

A. Sideband squeezing

Now, we apply the above discussion to an ideal OPO
squeezing. We consider the ideal case where a beam of a
squeezed vacuum state from an OPO never suffers from any
optical losses. Referring to previous works [18,21], the ideal
OPO squeezing is a unitary Bogoliubov transformation

Ŝ†
γ,ε

ˆ̃a(ω)Ŝγ,ε = γ 2 + ω2 + |ε|2
(γ − iω)2 − |ε|2

ˆ̃a(ω)

+ 2γ ε

(γ − iω)2 − |ε|2
ˆ̃a
†
(−ω), (26)

where γ ∈ R+ is the cavity decay constant (with the factor
2), and ε ∈ C represents the pump field. We only consider
|ε| < γ , and the maximum squeezing is obtained at ω = 0 at
the limit of the oscillation threshold |ε| → γ .

We here suppose ε ∈ R+ for simplicity without loss of
generality, by which ˆ̃p(0) quadrature is squeezed. Equation
(26) is equivalent to

Ŝ†
γ,ε[ ˆ̃a(ω) ± ˆ̃a

†
(−ω)]Ŝγ,ε = γ ± ε + iω

γ ∓ ε − iω
[ ˆ̃a(ω) ± ˆ̃a

†
(−ω)],

(27)

and from this we obtain the sideband antisqueezing and
squeezing

Ŝ†
γ,ε[ ˆ̃x(ω) + ˆ̃x(−ω)]Ŝγ,ε

=
∣∣∣∣γ + ε + iω

γ − ε − iω

∣∣∣∣[ ˆ̃x
(−φ(ω))

(ω) + ˆ̃x
(−φ(−ω))

(−ω)
]
, (28a)

Ŝ†
γ,ε[ ˆ̃p(ω) + ˆ̃p(−ω)]Ŝγ,ε

=
∣∣∣∣γ − ε + iω

γ + ε − iω

∣∣∣∣[ ˆ̃p
(−φ(ω))

(ω) + ˆ̃p
(−φ(−ω))

(−ω)
]
, (28b)

with the phase rotation

φ(ω) = arg

(
γ + ε + iω

γ − ε − iω

)
= arg

(
γ − ε + iω

γ + ε − iω

)
, (29)

which remains to be nonzero at ε → 0 for ω �= 0 and thus is
coming from the cavity, expressing the time delay by storage.
This phase rotation by φ(ω) can be neglected when we consider
a squeezed vacuum output Ŝγ,ε |∅〉 because the input vacuum
state |∅〉 is rotation invariant. The antisqueezing spectrum V (+)

γ,ε

and the squeezing spectrum V (−)
γ,ε are

V (+)
γ,ε (ω) =

∣∣∣∣γ + ε + iω

γ − ε − iω

∣∣∣∣2

= (γ + ε)2 + ω2

(γ − ε)2 + ω2
, (30a)

V (−)
γ,ε (ω) =

∣∣∣∣γ − ε + iω

γ + ε − iω

∣∣∣∣2

= (γ − ε)2 + ω2

(γ + ε)2 + ω2
. (30b)
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FIG. 2. Normalized correlation functions N (rγ,ε)(t) in the time
domain, obtained by numerical calculations, for γ = 1. Solid blue
line: both-side exponential function corresponding to the limit of
ε → 0. Dashed orange line: ε = 0.3. Dotted green line: ε = 0.7.
The latter two correspond to the squeezing degrees of about 5.4 and
15.1 dB, respectively, at ω = 0.

The squeezing at each frequency ω is pure with minimum
uncertainty, i.e., V (+)

γ,ε (ω)V (−)
γ,ε (ω) = 1 for all ω, which is a

natural result from the assumption of no optical losses and
continuous pumping.

B. Equivalent squeezing operator

From above, we may redefine the squeezing operator of the
ideal OPO as

Ŝγ,ε = exp

{
1

2

∫
[̃rγ,ε(ω) ˆ̃a

†
(ω) ˆ̃a

†
(−ω)

− r̃γ,ε(ω) ˆ̃a(ω) ˆ̃a(−ω)]dω

}
, (31)

with the real squeezing parameter

r̃γ,ε(ω) = ln
√

V
(+)
γ,ε (ω) = 1

2
ln

[
(γ + ε)2 + ω2

(γ − ε)2 + ω2

]
, (32)

by neglecting the phase rotation by φ(ω). We will use this
definition in the following. The squeezing operator has the
equivalent time-domain representation

Ŝγ,ε = exp

{
1

2

∫
[rγ,ε(t1 − t2)â†(t1)â†(t2)

− rγ,ε(t1 − t2)â(t1)â(t2)]dt1dt2

}
. (33)

An important point is, when the pump field is weak
(ε/γ � 1),

r̃γ,ε(ω) ≈ ε
2γ

γ 2 + ω2
, (34a)

rγ,ε(t) ≈ ε
√

2π exp(−γ |t |). (34b)

This both-side exponential function is a typical wave-packet
mode function of a cat state [17], from the relation in Eq. (17).
As shown in Fig. 2, the normalized correlation function
N (rγ,ε)(t) is very close to the both-side exponential function
unless the squeezing level is very high.
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C. Explanation of both-side exponential correlation

The both-side exponential function in Eq. (34) is understood
as follows. We may write the correlation function of a general
pair-creation operator in Eq. (13) as

r(t1 − t2) =
∫

λ(t1 − τ )λ(t2 − τ )dτ, (35)

or shortly r = λ ∗ λR , where the superscript R denotes the
time reversal

f R(t) := f (−t). (36)

Furthermore, we may interpret τ as the timing of a pump
photon to be converted to a photon pair inside the cavity, and
take λ as the cavity decay function

λ(t) ∝ exp(−γ t)u(t), (37)

where u(t) is the unit step function

u(t) =
{

0, t < 0
1, t � 0.

(38)

In this case, the correlation function r(t) becomes a both-side
exponential function

r(t) ∝ exp(−γ |t |), (39)

On the other hand, an interesting thing is that, when
the parametric down conversion is not degenerate (e.g., in
polarization), the decay of signal and idler photons can be
asymmetric, r = λsig ∗ λR

idl with λsig �= λidl. In this case, the
time-reversal symmetry of the correlation function is broken,
r �= rR . This mechanism is found to be useful, e.g., in creation
of exponentially rising wave packets g(t) ∝ exp(γ t)u(−t) of
heralded single-photon states by setting λsig(t) ∝ δ(t), which
is advantageous in real-time homodyne measurements [19].

D. Impurity and equivalent losses

In order to estimate how the bandwidth of the wave packet
affects the impurity of squeezing, we calculate the squeezing
and antisqueezing with respect to wave packets,

g(t) = √
γrelγ exp(−γrelγ |t |), (40a)

g̃(ω) =
√

2γrelγ

π

γrelγ

γ 2
relγ

2 + ω2
, (40b)

by using Eq. (18). Here, γrel denotes the relative bandwidth
which is dimensionless, and γrel = 1 corresponds to the typical
both-side exponential wave-packet function of heralded cat
states, proportional to Eq. (34b). Then, we quantify the
asymmetry between the squeezing and the antisqueezing via
the equivalent amount of losses L. Linear optical losses are
equivalent to invasion of vacuum fluctuation from a virtual
beam splitter. When a pure single-mode squeezed state with
a squeezing parameter |r| > 0 suffers from losses L, the
minimum uncertainty relation is broken, and the squeezed
and antisqueezed quadrature variances ( 1

2 )V (+) and ( 1
2 )V (−)
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FIG. 3. Equivalent amount of losses L as a function of the
relative bandwidth of the wave-packet mode function γrel. Solid
blue line: ε/γ = 0.03. Dashed orange line: ε/γ = 0.3. Dotted green
line: ε/γ = 0.7. They correspond to the squeezing degrees of about
0.5, 5.4, and 15.1 dB, respectively, at ω = 0. The traces are almost
overlapped. In particular, L ≈ 0.1 at γrel = 1.

become

1
2V (+) = 1

2 [(1 − L)e2|r| + L], (41a)

1
2V (−) = 1

2 [(1 − L)e−2|r| + L], (41b)

and therefore, the equivalent amount of losses L to express the
asymmetry is

L = V (+)V (−) − 1

V (+) + V (−) − 2
. (42)

Note that L is indefinite when V (+) = V (−) = 1, which
corresponds to the fact that a vacuum state is not changed by
losses. The calculated L as a function of γrel is plotted in Fig. 3,
which is slightly dependent on the degree of squeezing ε/γ .
The dependence on ε/γ is so small that we cannot almost see
this dependence from the figure. At γrel = 1, the corresponding
amount of losses is about 10%, therefore, we may consider the
ordinary cat-generation methods include this 10% of losses in
some form, which will be discussed in Sec. IV F.

E. Mode-matching rate of squeezing

Now, we see that the 10% of the equivalent losses coincides
with the mode-matching rate discussed in Sec. III E. We
assume the both-side exponential correlation function r(t) =
r∗(t) ∝ exp(−γ |t |) of the OPO squeezing. For the wave packet
with γrel = 1, g(t) in Eq. (40a) coincides with the normalized
correlation function N (r)(t). By using

N (r ∗ r)(t) =
√

2γ

5
(1 + γ |t |) exp(−γ |t |), (43)

the mode-matching rate in Eq. (25) is calculated as

M[r,r] = |〈N (r),N (r ∗ r)〉|2 =
∣∣∣∣ 3√

10

∣∣∣∣2

= 9

10
. (44)

This explains the equivalent losses being about 10% at γrel = 1.
Figure 4 shows the functions N (r)(t) and N (r ∗ r)(t), and their
discrepancy corresponds to the inefficiency of the squeezing.
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FIG. 4. Mode functions to show the mode match of squeezing to
heralded single-photon wave packets, for the case without filtering,
for r(t) ∝ exp(−γ |t |) with γ = 1. Solid blue line: N (r)(t). Dashed
orange line: N (r ∗ r)(t).

F. Impurity in photon subtraction

Now, we discuss how the impurities of squeezed wave pack-
ets discussed above affect photon-subtracted states. Before
going the right way, we would like to mention a mistaken idea
which would often occur. The idea is based on the fact that
optical losses commute with the photon-subtraction process,
which is confirmed as follows. When an annihilation operator
â is applied to some single-mode state |ψ〉 which suffers from
losses as B̂(L) |ψ〉 ⊗ |0〉anc, where B̂(L) is the beam-splitter
interaction used in Sec. II, then it transforms as

âB̂(L) |ψ〉 ⊗ |0〉anc

= B̂(L)[B̂†(1 − L)âB̂(1 − L)] |ψ〉 ⊗ |0〉anc

= B̂(L)(
√

1 − Lâ −
√

Lâanc) |ψ〉 ⊗ |0〉anc

∝ B̂(L)â |ψ〉 ⊗ |0〉anc . (45)

Therefore, the losses that the initial state |ψ〉 has suffered
appear as the losses that the ideal photon-subtracted state â |ψ〉
suffers. If this theory is applied to the virtual losses due to the
nonflat squeezing spectrum discussed above, it leads to the
conclusion that the ideal photon-subtracted state suffers from
about 10% of optical losses.

However, somewhat surprisingly, we can see that this is
not the case, from Eq. (17). In the limit of weak pumping,
the conditional state approaches to an ideal heralded single-
photon state in the wave packet N (rγ,ε) rather than that with
10% of losses. The true situation is that an ideal heralded
single-photon state â

†
N(rγ,ε ) |∅〉 is subject to impure squeezing.

The discrepancy with Eq. (45) is considered to be coming
from the annihilation operator replaced by the single-mode
one â(t) → â. In fact,

âgP̂
†
r |∅〉 ∝ [〈g,N (g∗ ∗ r)〉â†

g

+
√

1 − |〈g,N (g∗ ∗ r)〉|2â†
g⊥ ] |∅〉 , (46)

and this coincides with the wrong answer of the lossy single-
photon state in the wave-packet mode g(t). We must be careful
about this way of wrong consideration, coming from the
replacement of an instantaneous annihilation operator â(t)
by a single-mode one â, which may especially occur when
orthogonal modes are traced out at the beginning.

As for the impure squeezing of the heralded single-photon
state, the calculated 10% as the mode mismatch is rigorous
when r(t) ∝ exp(−γ |t |), but we note that the actual portion of
ill photon pairs is not exactly 10% for the following reason.
The precise calculation must include the effect to

√
n + 1

terms which appears when â† is applied to the n-photon
state |n〉 (i.e., the effects that photons tend to bunch due
to stimulated processes), which makes the situations much
more complicated. However, in the case of weak pumping,
the situation is simplified as follows. Because of the small
squeezing parameter |̃r(ω)| � 1, we may approximate Ŝr ≈
1 + (1/2)(P̂ †

r − P̂r ) and neglect the higher-order terms of
the Taylor expansion like P̂

†2
r . Photon-pair creation P̂

†
r ≈

cg,gâ
†2
g + 2cg,g⊥ â

†
gâ

†
g⊥ operating on wave-packet modes g in

a single-photon state and g⊥ in a vacuum state results in

[
cg,gâ

†2
g + 2cg,g⊥ â†

gâ
†
g⊥

] |1〉g ⊗ |0〉g⊥

=
√

6cg,g |3〉g ⊗ |0〉g⊥ + 2
√

2cg,g⊥ |2〉g ⊗ |1〉g⊥ . (47)

That is, the process of |1,0〉 → |3,0〉 is three times more
significant than the process of |1,0〉 → |2,1〉, but taking into
account the factor 2 multiplied to cg,g⊥ in the decomposition of

P̂
†
r in Eq. (23) or Eq. (24), the actual bias in the ratio is (

√
6)2 :

(2
√

2)2 = 3 : 4. This bias is applied to the mode-matching
rate of 90%, making the ratio of the three-photon component
and the two-photon component being about 87 : 13. Note that
the three-photon component is coherent with the single-photon
component, although the two-photon component is incoherent.
Anyway, the above discussion has shown the existence of the
inherent inefficiency in the conventional photon-subtraction
method, due to the mode mismatch of squeezing with respect
to the heralded single-photon mode. Next, we discuss how this
inefficiency can be removed.

V. PURIFICATION BY FILTERING

As discussed above, under the time-translation symmetry of
photon-pair generation with no optical losses, each frequency
component of squeezing is pure. That is, by limiting the
bandwidth of wave packets, the squeezing of the wave packets
becomes purer. Therefore, if we could create cat states in wave
packets with a narrower bandwidth (relative to the bandwidth
of squeezing), the mode match of squeezing is improved and
thereby the resulting cat states become purer.

Here, we propose the method to insert a filter cavity before
the photon detection, which has narrower bandwidth than
that of the OPO. In the following, we will show that the
mode-matching rate of squeezing can arbitrarily approach to
1 with this method. Therefore, our method enables the ideal
squeezed single-photon state, which was not possible with the
conventional method. It is in contrast to previous experiments
where, although filter cavities are utilized, the bandwidths of
them are broader than that of the OPO in order to utilize the
natural photon-pair correlations determined by the OPO cavity
as described above.

Expressing the response function of the filter as h(t),
the transformation of the field passing through the filter is
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defined as

F̂
†
h â(t)F̂h =

∫
{h∗(τ )â(t − τ ) − [δ(τ ) − h∗(τ )]âref(t − τ )}dτ,

(48)

where the subscript “ref” denotes the reflected ancillary field
to compensate the commutation relation. The exact form of the
response function of a typical single-cavity filter is the same
as the impulse response function of a first-order low-pass filter

h(t) = � exp(−�t)u(t). (49)

This is equivalent to a frequency-dependent beam splitter [21]

F̂
†
h

ˆ̃a(ω)F̂h = � ˆ̃a(ω) + iω ˆ̃aref(ω)

� − iω
, (50)

where the best transmission is obtained at the center frequency
of the cavity Lorentzian ω = 0. Here, � is the filter-cavity
decay rate (with the factor 2). It can be checked h(t) → δ(t)
at the limit of � → 0, corresponding to the case without any
filtering, F̂ †

h â(t)F̂h → â(t). However, for the moment, we deal
with the filter response function h(t) as a general function,
allowing the filter to be a more general one.

We set the photon detection timing to t = 0 without loss
of generality. By using the invariance of a vacuum state under
filtering, we obtain

ref〈∅| ⊗ anc〈∅| âanc(0)F̂h;ancB̂(R → 0)(Ŝr |∅〉)
× ⊗|∅〉anc ⊗|∅〉ref

= ref〈∅| ⊗ anc〈∅|

×
[∫

{h∗(τ )âanc(−τ ) − [δ(τ ) − h∗(τ )]âref(−τ )}dτ

]
× B̂(R → 0)(Ŝr |∅〉) ⊗|∅〉anc ⊗|∅〉ref

=
√

R

[∫
h∗(τ )â(−τ )dτ

]
Ŝr |∅〉 . (51)

Here, Eq. (2) is applied to anc〈∅| âanc(−τ )B̂(R → 0)(Ŝr |∅〉) ⊗
|∅〉anc. Note that, in addition to the necessary projection
measurement anc〈∅| âanc(0), here ref〈∅| is also applied for
mathematical simplicity, but actually the measurement of the
reflected field is not needed.

As above, the photon subtraction after filtering by h(t) is to
apply the annihilation operator âN(hR ), where the superscript R
is the time reversal defined in Eq. (36). The squeezed single-
photon state in Eq. (16) is modified as

âN(hR )Ŝr |∅〉

=
[∫

N (̃hR∗)(ω) ˆ̃a(ω)dω

]
Ŝr |∅〉

= Ŝr

[∫
N (̃hR∗)(ω) ˆ̃a

†
(ω) exp{2iθ (ω)} sinh |̃r(ω)|dω

]
|∅〉

≈ Ŝr

[∫
N (̃hR∗)(ω)̃r(ω) ˆ̃a

†
(ω)dω

]
|∅〉

∝ Ŝr â
†
N(hR∗∗r)|∅〉 . (52)

The wave packet of the heralded single-photon component
is modified from N (r)(t) in Eq. (17) to N (hR∗ ∗ r)(t) by the
filtering with h(t). Therefore, the concerned mode-matching
rate is

M[hR ∗ r,r] = |〈N (hR ∗ r),N (hR ∗ r ∗ r)〉|2. (53)

In the extreme case where r(t) almost works like a delta
function in convolution with hR(t) except for the normaliza-
tion, M[hR ∗ r,r] approaches to unity because N (hR)(t) ≈
N (hR ∗ r)(t) ≈ N (hR ∗ r ∗ r)(t). This is the situation we aim
at by inserting the filter.

Now, we consider the specific case of h(t) = h∗(t) ∝
exp(−�t)u(t) and r(t) = r∗(t) ∝ exp(−γ |t |), and see the
mode-matching rate improved by the filtering. The heralded
single-photon wave-packet mode N (hR ∗ r)(t) is calculated as

N (hR ∗ r)(t) =
⎧⎨⎩

√
γ�

2γ+�
1

γ−�
[2γ exp(�t) − (γ + �) exp(γ t)], t < 0√

γ�

2γ+�
exp(−γ t), t � 0

(54)

if γ �= �. On the other hand, N (hR ∗ r ∗ r) is calculated as√
16γ 3 + 29γ 2� + 20γ�2 + 5�3

2γ 3�
N (hR ∗ r ∗ r)(t) =

{
4γ 2

(γ−�)2 exp(�t) − [ (2γ−�)(γ+�)2

γ (γ−�)2 − (γ+�)2

γ−�
t
]

exp(γ t), t < 0[
2 + �

γ
+ (γ + �)t

]
exp(−γ t), t � 0

(55)

if γ �= �. Figure 5 shows the three functions N (hR ∗ r)(t), N (hR ∗ r ∗ r), and N (hR), for γ = 1 and � = 0.4. In comparison
with the functions without filtering shown in Fig. 4, we can see that the heralded wave-packet mode N (hR ∗ r)(t) approaches to
a rising exponential wave-packet mode N (hR), and the mode overlap with N (hR ∗ r ∗ r) is improved.

From above, the mode-matching rate is calculated as a function of the relative bandwidth of the filter �rel := �/γ :

M[hR ∗ r,r] =
(
8 + 9�rel + 3�2

rel

)2

2(2 + �rel)
(
16 + 29�rel + 20�2

rel + 5�3
rel

) . (56)

It approaches to the bare mode-matching rate of 9
10 in Eq. (44)

at the limit of �rel → ∞ and to unity at the limit of �rel → 0.
The mode-matching rate M[hR ∗ r,r] is plotted in Fig. 6 with

respect to the relative inverse bandwidth 1/�rel. We can see
that M[hR ∗ r,r] monotonically improves with larger 1/�rel.
That is, narrower bandwidth of the filter compared with that
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FIG. 5. Mode functions to show the mode match of squeezing to
heralded single-photon wave packets, for the case with filtering, for
r(t) ∝ exp(−γ |t |) with γ = 1 and h(t) ∝ exp(−�t)u(t) with � =
0.4. Solid blue line: N (hR ∗ r)(t). Dashed orange line: N (hR ∗ r ∗
r)(t). Dotted green line: N (hR)(t).

of the OPO is preferable regarding pure cat-state creation. In
the same way, we can also consider a higher-order low-pass
filter by combining multiple cavities, in which case the mode-
matching rate will approach to unity more rapidly.

VI. SUMMARY AND DISCUSSION

We discussed inherent impurity in the conventional CW-
based photon-subtraction methods due to nonflat spectrum of
OPO squeezing. The impurity was characterized via the notion
of mode mismatch of squeezing, with highlighted Eq. (23).
Then, we showed that the impurity is arbitrarily reduced by
inserting a filter cavity before the photon detection for the
photon subtraction. The amount of inefficiencies discussed
here and removed by our filtering method may not be so large,
but it will become important for ultimate experiments where
very high purities of cat states are required.

We here basically discussed one-photon subtraction, but
the same discussions are valid for multiphoton subtraction.
However, in the case of multiphoton subtraction, there arise
additional parameters of time differences among individual
photon detections [8,18].

Since the impurity is coming from the longitudinally
continuous nature of the squeezed light, making entanglement
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FIG. 6. The mode-matching rate in Eq. (56).

with orthogonal modes, another possible solution to remove
the impurity is first to create a pure single-mode squeezed
state directly inside an ideal quantum memory and then to
subtract photons from the pure squeezed state released from the
memory. However, currently the inefficiency of a cavity-based
quantum memory itself is much larger than the inefficiency
discussed here [22].

Another observation is, although here we only discussed
the CW pumping case, similar problems also exist in the
case of pulsed pump laser light. In a typical pulsed case,
the highest level of squeezing is available around the peaks
of pump pulses, while relatively low squeezing exists at the
side slopes [23]. Such a situation naturally involves multimode
squeezing, which results in impure photon subtraction. There
are some works to create uncorrelated photon pairs in a pulsed
regime [24].

In general, optical filtration before heralding-photon de-
tection is useful, enabling engineering of the heralded wave-
packet modes, and we note that optical high-pass filtering is
utilized in previous experiments for preparation of cat states in
order to avoid noisy low frequencies, which are then utilized
as input states of quantum teleportation system [25].
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