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Universal quantum computation with temporal-mode bilayer square lattices
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We propose an experimental design for universal continuous-variable quantum computation that incorporates
recent innovations in linear-optics-based continuous-variable cluster state generation and cubic-phase gate
teleportation. The first ingredient is a protocol for generating the bilayer-square-lattice cluster state (a universal
resource state) with temporal modes of light. With this state, measurement-based implementation of Gaussian
unitary gates requires only homodyne detection. Second, we describe a measurement device that implements an
adaptive cubic-phase gate, up to a random phase-space displacement. It requires a two-step sequence of homodyne
measurements and consumes a (non-Gaussian) cubic-phase state.
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I. INTRODUCTION

Recently, there has been substantial progress in devel-
oping the basic building blocks of quantum computation
using continuous-variable cluster states (CVCSs) [1]. Two-
dimensional (or higher-dimensional) cluster states enable
universal quantum computation provided that one can also
perform suitable sequences of single-site measurements [1,2].
Thus, much effort has focused on generating large-scale cluster
states and implementing sets of measurements that enable uni-
versal measurement-based quantum computation (MBQC) [3].

The scalability of one-dimensional CVCS architectures is
now well established. Recent experimental demonstrations
have yielded states consisting of 60 frequency modes (where
each mode is simultaneously addressable) [4] and greater than
one million temporal modes (where each mode is sequentially
addressable) with no significant experimental obstacles hin-
dering the generation of even larger states [5,6]. These states
are endowed with a multilayered graph,1 from which can be
derived a simple and compact state generation circuit consist-
ing of offline squeezers and constant-depth linear optics [8].
This feature makes them highly compatible with multimode
squeezing platforms, such as optical parametric oscillators
(OPOs) [8–11] and Josephson traveling-wave parametric am-
plifiers [12]. Though these states generalize to two [8,13,14]
and higher dimensions [13], the generation of such a scalable
universal cluster state has yet to be demonstrated.

Complementary to this work is an effort to implement
a universal set of continuous-variable gates using tailored
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1Here graph has a precise mathematical meaning, being uniquely

defined for all Gaussian pure states up to phase-space displacements
and overall phase as in Ref. [7].

small-scale resource states (prepared offline) and gate telepor-
tation [15]. Examples include demonstrations of single-mode
Gaussian operations (including linear optics and squeezing)
[16–18], single-mode non-Gaussian operations such as the
cubic-phase gate [19–23], and the two-mode sum gate [24].
Such demonstrations are gate specific and have remained lim-
ited to small-scale implementations. It is therefore desirable to
synthesize these elements into one universal, scalable design.

Here we consider an approach to universal quantum compu-
tation that seeks to marry the above research threads. We begin
by modifying an existing protocol (proposed by some of us) for
generating a universal cluster state known as the bilayer square
lattice [14] (BSL). Our implementation makes use of temporal
modes and requires four squeezers, five beam splitters, and two
delay loops. The practicality of this scheme stems from its sim-
ilarity to the aforementioned one-dimensional experiment [6].

Beyond state generation, much of the previous work on
quantum computing with CVCSs has focused on Gaussian op-
erations [25–33], which can be implemented with nonadaptive
homodyne measurements [1,3] and can be efficiently simulated
[34]. Universal quantum computation requires non-Gaussian
gates, which can be implemented by measuring quadratic or
higher-order polynomials in the quadrature operators or by in-
jecting non-Gaussian single-mode states directly into the clus-
ter state [3]. In order for non-Gaussian computations to proceed
deterministically, the measurements must be adaptive [3].

Other than the present proposal, Ref. [3] is the only explicit
experimental proposal for implementing a universal set of
measurement-based gates on a CVCS. In that approach, a
non-Gaussian gate known as the cubic-phase gate is imple-
mented on a CVCS using photon-number-resolving detection
and adaptive squeezing operations. Even in the absence of
experimental sources of error (such as lost photons), requiring
adaptive squeezing operations is problematic. This is because
the amount of squeezing required is unbounded (it depends

2469-9926/2018/97(3)/032302(12) 032302-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.97.032302&domain=pdf&date_stamp=2018-03-05
https://doi.org/10.1103/PhysRevA.97.032302


ALEXANDER, YOKOYAMA, FURUSAWA, AND MENICUCCI PHYSICAL REVIEW A 97, 032302 (2018)

on the random homodyne measurement outcomes), and im-
plementing high levels of squeezing via MBQC is known to
amplify the intrinsic noise due to the Gaussian nature of the
cluster state [30].

Here we propose a measurement device that consumes a
cubic-phase ancilla state and implements a cubic-phase gate.
The measurement adaptivity that compensates for the random-
ness of the measurement outcomes can be implemented with a
single adaptive phase shift element, and therefore the required
amount of squeezing in this protocol is not probabilistic.
Our device uses a two-step adaptive homodyne measurement,
similar to the gate teleportation scheme proposed in Ref. [22].

This paper is organized as follows. In Sec. II, we introduce
notation. In Sec. III, we present our experimental design
for generating the bilayer square lattice cluster state using
temporal modes. Using the cluster state’s graph, we construct
a convenient set of observables for experimental methods of
entanglement verification. In Sec. IV, we demonstrate how
universal quantum computation proceeds via measurement of
the resource state. We conclude in Sec. V.

II. NOTATION AND DEFINITIONS

Throughout this paper, we adopt the same conventions as
in Ref. [14]. For convenience, we summarize them here. For
all modes:

q̂ := 1√
2

(â + â†), (1)

p̂ := 1

i
√

2
(â − â†). (2)

Using [â,â†] = 1, this implies that [q̂,p̂] = i with h̄ = 1 and
vacuum variances 〈q̂2〉vac = 〈p̂2〉vac = 1

2 . Define the rotated
quadrature operators:

q̂(θ ) := q̂ cos θ − p̂ sin θ, (3)

p̂(θ ) := p̂ cos θ + q̂ sin θ. (4)

We use the following column notation for operators on n

modes:

q̂ := (q̂1, . . . ,q̂n)T, (5)

p̂ := (p̂1, . . . ,p̂n)T, (6)

x̂ :=
(

q̂
p̂

)
. (7)

Columns of c-numbers corresponding to these operators are
denoted analogously as q, p, and x. Let |s〉qi

and |t〉pi
∀s,t ∈

R denote eigenstates of position and momentum for mode i,
respectively. In this proposal, we show how to implement the
universal gate set shown in Table I.

Below, we define some additional gates and states required
to generate the BSL. We define the two-mode beam-splitter
gate

B̂ij (θ ) := exp[−θ (â†
i âj − â

†
j âi)]

= exp[−iθ (q̂i p̂j − q̂j p̂i)], (8)

TABLE I. A universal set of gates for continuous-variable
quantum computation. Here, the parameters s,t,r,σ,g,χ ∈ R and
θ ∈ [0,2π ). Gates in class I generate all phase-space displacements.
Gates in the union of classes I and II (redundantly) generate the
Gaussian unitary group. Class III contains the cubic-phase gate, which
extends the Gaussian unitaries to a universal gate set [15]. Note that
the squeezing gate is sometimes defined with respect to the squeezing
factor s = er , which is the rescaling factor for the Heisenberg picture
evolution of the quadrature operator q̂ under the squeezing operation
[14]. In this paper we reserve the letter s for displacements in position
and work only with the squeezing parameter r .

Gate Class Symbol Equation

q̂-shift I X̂(s) exp(−isp̂)
p̂-shift I Ẑ(t) exp(it q̂)
Phase delay II R̂(θ ) exp(iθ â†â)
Squeezing II Ŝ(r) exp [−r(â2 − â†2)/2]
Shear II P̂ (σ ) exp(iσ q̂2/2)
Controlled-Z II ĈZ(g) exp(igq̂ ⊗ q̂)
Cubic-phase III K̂(χ ) exp(iχq̂3/3)

where sin θ is the reflectivity of the beam splitter. Its Heisen-
berg action on x̂ = (q̂i ,q̂j ,p̂i ,p̂j )T is given by

Bij (θ ) =

⎛
⎜⎝

cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 cos θ − sin θ

0 0 sin θ cos θ

⎞
⎟⎠. (9)

For the special case of a 50:50 beam splitter, which corresponds
to θ = π

4 , we drop explicit angle dependence:

B̂ij := B̂ij

(
π

4

)
. (10)

We define the single-mode squeezed states

|η(r)〉 := Ŝ(r)|0〉, (11)

where |0〉 is the vacuum state and r > 0 (r < 0) corresponds to
squeezing in the momentum (position) quadrature. We define
the idealized (and unnormalizable) cubic-phase states

|φχ 〉 :=
∫

dseiχs3/3 |s〉q . (12)

Approximations to the cubic-phase states can be created as a
truncated superposition of the Fock states |φχ 〉 = ∑

n cn |n〉
with two-mode-squeezed vacuum states and photon detection
[19]. Once prepared, such states can be stored with cascaded
cavities for on-demand injection into the BSL [35].

A. Graphical notation

Below, we use the graphical calculus for Gaussian pure
states [7] in order to describe the generation procedure for
the BSL and the implementation of gates. Gaussian pure states
with zero mean are one to one (up to an overall phase) with
complex, symmetric adjacency matrices (i.e., |ψ〉 ↔ Z) [7].
This is immediate from the position-space representation

ψ(q) = 〈q|ψ〉 = (det Im Z)1/4

πn/4
exp

[
i

2
qTZq

]
, (13)
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FIG. 1. (a) Optical circuit diagram that executes all stages of the generation and measurement of the bilayer square lattice using temporal
modes. Input states encoded within the cluster state can be addressed at the black star (	). The legend includes two examples: (left) a switching
device for encoding or removing inputs from the cluster state and (right) a syndrome-measurement circuit for quantum error correction using
Gottesman-Kitaev-Preskill qubits [36]. The first dashed red line indicates the point at which the state is made up of disjoint squares [see panel
(b)]. The second dashed red line is the point where the final cluster state exists [see panel (c)]. Cluster-state modes are measured at detectors
a, b, c, or x. Detector x has two settings: homodyne measurement by using d or cubic-phase gate-teleportation measurement by using e and
f . The latter involves injecting a cubic-phase-state ancilla |φχ 〉 and using an adaptive (variable) phase delay. See main text for details. If the
x detector is always set to d , then the phase delays marked by a red asterisk can be omitted by compensating with a π/4 phase delay before
detectors a, b, c, and x. (b) Each gray or green rectangle contains modes that arrive at the first red dotted line in panel (a) simultaneously.
The numerical labels indicate the relevant time step in units of 
t . The red arrows between each disjoint square represent the application of
the beam splitters between the red dotted lines in panel (a). (c) The bilayer-square-lattice graph. The letters {a,b,c,x} in the rectangle labeled
1 indicate at which detector each mode is measured.

where |q〉 := ⊗n
i=1 |qi〉q . Note that Im Z is required to be

positive definite in order for the state to be normalizable. An
independent set of n nullifiers for |ψ〉 is given by

(p̂ − Zq̂) |ψ〉 = 0. (14)

This set forms a basis for the commutative algebra of linear
nullifiers of |ψ〉.

For convenience, when using the graphical calculus in
figures and diagrams, we restrict ourselves to the conventions
of the simplified graphical calculus introduced in Refs. [8,14].
Therefore, self-loops (corresponding to the diagonal entries of
Z) are not drawn but are assumed to have weight i sech 2r ,
where r parametrizes the amount of vacuum squeezing used to
generate the state. Furthermore, edges between distinct nodes
have the same magnitude C tanh 2r , where C is indicated below
each graph. These edges have a phase of ±1, denoted by blue
and yellow coloring, respectively.

III. TEMPORAL-MODE GENERATION OF
THE BILAYER SQUARE LATTICE

A. Construction

The first step in generating the BSL with temporal modes
is to create a four-mode square-shaped cluster state. The
construction of these is shown graphically as follows:

(15)

A pair of two-mode CVCSs [shown to the left in Eq. (15)]2

is transformed by a single 50:50 beamsplitter B̂ij [indicated
by the red (downward pointing) arrow from mode i → j ],
resulting in the square-shaped cluster state [shown to the right
in Eq. (15)].

Using temporal modes with time-bin windows of size 
t ,
we can generate an array of square-shaped cluster states using
the optical circuit shown in Fig. 1(a). Let NM
t be the runtime
of the experiment, where N sets the delay on the longer delay
loop in Fig. 1(a). The time axis is partitioned into M segments
of length N
t , yielding an array of size N×M in the time
domain. In Fig. 1(b) we show the N = M = 3 case as an
example.

The final step involves applying a sequence of balanced
beam splitters between modes as indicated by the red ar-
rows in Fig. 1(b). The resulting state has a double-layered
square-lattice graph, as shown in Fig. 1(c). The experimental
simplicity of our scheme is self-evident.

B. Nullifiers

Here we discuss the nullifiers of the BSL, which play an
important role in verifying genuine multipartite entanglement
via homodyne detection [37–40]. A class of experimentally
convenient methods for verifying multiparite entanglement has
been developed based on the van Loock-Furusawa criterion
[5,37]. Such methods can be applied to states possessing a
generating set of nullifiers {ν̂i}i=1,...,n with the property that
each ν̂i is a linear combination of either position or momentum

2These are equivalent to two-mode squeezed states, up to local phase
delays.
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quadrature operators (not both). In this case, verifying mul-
tipartite entanglement requires only two types of homodyne
measurements (on distinct copies of the state): all modes in
the q̂ basis or all modes in the p̂ basis. Variances for all
nullifiers can be inferred by taking linear combinations of the
data, signaling the presence of multipartite entanglement [37].

The BSL graph ZBSL in Fig. 1(c) immediately provides a set
of n generators for the algebra of nullifiers [see Eq. (14)]. These
can be made Hermitian by taking the infinite-squeezing limit,
VBSL := limr→∞ ZBSL, resulting in approximate nullifiers [7]:

(p̂ − VBSLq̂) |ψBSL〉 → 0, (16)

where → indicates the limit of infinite squeezing within |ψBSL〉
(which is independent of the limit used to define VBSL). As
noted above, it is more convenient from an experimental view-
point to work with nullifiers that are combinations of either
position or momentum operators. Though CVCSs cannot have
such a set of nullifier generators [7], in some cases, we can use
local phase delays (which preserve entanglement properties
of the state) to transform them into states that do. This is
formalized by the following theorem.

Theorem 1. Any 2n-mode, ideal (i.e., infinitely squeezed)
continuous-variable (CV) cluster state with a trace-zero, self-
inverse graph V can be approximated by a 2n-mode finitely
squeezed cluster state |�r〉, with overall squeezing parameter
r , that is equivalent under local phase delays to a Gaussian pure
state |r〉 that satisfies the following two properties.

(i) |r〉 is approximately nullified by a set of 2n indepen-
dent local operators that each consist of linear combinations of
either position or momentum operators. Here locality is defined
with respect to V.

(ii) The corresponding graph Z,r only differs from Z�,r by
a nonzero, uniform reweighting of the edges and a (different)
nonzero, uniform reweighting of the self-loops.
For proof, see Appendix A.

The locality of these nullifiers tends to be a useful property
when it comes to deriving bounds for entanglement witnesses
based on the nullifier variances [5,37]. In the infinite-squeezing
limit, the BSL graph is both self-inverse and trace zero.
Therefore Theorem 1 applies.

Denote the BSL state by |�BSL〉. Following the abovemen-
tioned notational convention, we define the Gaussian pure state

|BSL〉 := R̂

(
π

4

)⊗2n

|�BSL〉 . (17)

Though our proposal generates |�BSL〉, it could easily be
modified [e.g., by including the local phase shifts in Eq. (17) at
the BSL line in Fig. 1(a)] to generate |BSL〉 instead. Further-
more, |BSL〉 is an equivalent resource for measurement-based
quantum computation and possesses a set of approximate
nullifiers, (

(I2n − VBSL)p̂

(I2n + VBSL)q̂

)
|BSL〉 → 0, (18)

that are experimentally convenient for entanglement verifica-
tion.

Other known examples of cluster states with self-inverse,
trace-zero graphs include the dual-rail wire [8,13,30] and the
quad-rail lattice [8,13,33].

IV. UNIVERSAL MEASUREMENT-BASED
QUANTUM COMPUTATION

Now we describe universal quantum computation with
the BSL. It was shown explicitly in Ref. [14] how arbitrary
Gaussian unitary gates can be implemented on the BSL via
homodyne detection. This analysis also included the effects
of finite squeezing. Here we focus on extending this scheme
by adding cubic-phase-state injection for implementing non-
Gaussian gates. With this resource, the only type of measure-
ment our protocol requires is homodyne detection.

Temporal-mode architectures rely on fast control of the
local-oscillator (LO) beam phase at each homodyne detector
in order to set the measurement basis for each mode indepen-
dently. Dynamic phase control for time bins of 160 ns (used in
recent cluster-state demonstrations [5,6]) is within the scope
of current technology.3

Just like conventional square-lattice cluster states [1,2], the
BSL can be treated as a collection of quantum wires embedded
within a two-dimensional plane [14]. Entangling gates between
these quantum wires are mediated by local projective measure-
ments on sites that lie between wires. However, the BSL differs
from other cluster states in that the quantum wires actually run
along the diagonals of each squarelike unit cell, rather than
along the edges (which would be more conventional).

Each BSL lattice site, a.k.a. a macronode, consists of two
modes, labeled α and β. Without loss of generality, assume
that mode α is measured at either detector x or detector b,
and similarly, assume mode β is measured at either a or c. We
define the symmetric (+) and antisymmetric (−) mode of each
macronode via

â± := 1√
2

(âα ± âβ ) = B̂αβ âα(β)B̂
†
αβ. (19)

This offers an alternative tensor-product decomposition of each
macronode to the one provided by the physical modes, α and β.
We divide the discussion of gate implementation into two parts:
single-mode gates and two-mode gates. We leave an analysis
of the finite-squeezing effects to future work.

A. Single-mode gates

To implement single-mode gates, quantum wires must be
decoupled from the rest of the lattice by deleting unwanted
edges. This can be achieved by using detectors b and c to
measure in the basis q̂[(−1)ξ π

4 ] at particular macronodes,
where ξ is the time index modulo N [14]. The decoupling of
quantum wires is shown in Fig. 2(a). These wires are embedded
versions of dual-rail wires [5,30], as shown in Fig. 2(b).

Input states can be injected into or removed from the BSL
using the switching device at the 	 in Fig. 1(a). When embedded

3The dynamic changing of a LO beam phase has been exper-
imentally demonstrated in Ref. [28]. The phase control employs
a waveguide phase modulator with a bandwidth of >1 GHz. The
corresponding rise time of <1 ns is adequately smaller than 160-ns
time bins. Note that the 1-MHz operational bandwidth mentioned
in Ref. [28] is limited by other elements such as an OPO and a
homodyne detector. Recently, the bandwidths of these elements have
been drastically improved to >100 MHz [41].
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FIG. 2. (a) Measuring q̂[(−1)ξ π

4 ] at detectors b and c (indicated
by a red X) at time index ξ mod N deletes the grayed-out edges [14].
This decouples the central three rows of nodes from the rest of the
graph. An input state encoded within the green site on the left will
propagate in the direction of the green arrows. (b) After deletion as
in panel (a), the middle three graph modes are equivalent to the wire
graph shown at the top. This state is known as the dual-rail wire [5,30].
The letters a, b, c, and x indicate the detector at which the relevant
nodes are measured in Fig. 1(a). Measurements at detectors x and
a can be chosen freely to implement gates, whereas measurement
settings at b and c are fixed by the deletion measurements.

within the resource state, they reside in the + subspace of
macronodes on the leftmost edge of the BSL. Phase-space
displacements can be applied at the 	 location, though this
is equivalent to adapting the later measurements. We show this
in Sec. IV C.

Measurement constraints. Note that measurements at sites
b and c are fixed because they are used to decouple the wires
[14]. Therefore, only measurement degrees of freedom at x

and a are available to implement single-mode gates.
Single-mode Gaussian unitaries. Using the homodyne de-

grees of freedom, both a and d (choosing the appropriate
setting at x), implements a single-mode Gaussian unitary gate.
Measuring p̂d (θ1) and p̂a(θ2), with outcomes m1 and m2,
respectively, at a site with an encoded input state implements
the Gaussian unitary [14]

V̂ (θ1,θ2,m1,m2)

:= D̂

[−ieiθ2m1 − ieiθ1m2

sin(θ1 − θ2)

]
R̂(θ+)Ŝ(ln tan θ−)R̂(θ+),

(20)

where θ± := 1
2 (θ1 ± θ2), and D̂(α) := exp(αâ† − α∗â) is a

displacement operator. Up to phase-space displacements, these
gates can be used to generate arbitrary single-mode Gaussian
unitaries [25,30].

Single-mode non-Gaussian unitaries. Setting detector x

to measure at e and f can result in a non-Gaussian unitary
operation. We set detectors f and a to measure in the q̂ basis,
and we set e to measure p̂(θ ). Recall that we can treat the BSL
as a collection of disjoint dual-rail wires (see Fig. 2).

In order to better analyze the effect of this measurement
apparatus, in Fig. 3 we introduce some useful circuit identities.
First, consider the following identities involving the ĈZ gate
(that follow from the gate definitions):

B̂
(†)
jk ĈZ,ij (g) = ĈZ,ij

(
g√
2

)
Ĉ

(†)
Z,ik

(
g√
2

)
B̂

(†)
jk , (21)

qj
〈s| ĈZ,ij (g) = Ẑi(sg) qj

〈s| , (22)

FIG. 3. (a) Commutation of the ĈZ gate through B̂ [Eq. (21)].
(b) Commutation of the ĈZ gate through B̂† [Eq. (21)]. (c) q̂

measurement after the ĈZ gate [Eq. (22)]. (d) Circuit implementation
of the E operation [Eq. (24)]. (e) Measurement-based teleportation
identity [Eq. (25)].

shown in Figs. 3(a)–3(c). Next, we define the operation

E|ϕ〉,m := X̂(−m)Ŝ(ln
√

2)ϕ(m
√

2 − q̂), (23)

where ϕ(s) = q〈s|ϕ〉. In Appendix B we show that E|ϕ〉,m can
be implemented using the circuit shown in Fig. 3(d), i.e.,

qk
〈m| B̂jk |ψ〉j ⊗ |ϕ〉k = E|ϕ〉,m |ψ〉j . (24)

(Note that this is a trace-decreasing map, so for any particular
outcome m, the state must be renormalized afterward.) Finally,
Fig. 3(e) shows a measurement-based teleportation circuit
[30]. In the infinite-squeezing limit, this implements

M̂θ,m := X̂(−2m sec θ )R̂

(
−π

2

)
Ŝ

(
ln

1

2

)
P̂ (tan θ ). (25)

We provide a proof of Eq. (25) in Appendix C.
Now we analyze the measurement apparatus. Performing

our non-Gaussian measurement procedure is equivalent to the
quantum circuit shown in Fig. 4(a). This can be simplified by
applying the above identities as described by Figs. 4(b)–4(e).
Figure 4(e) shows that the measurement implements the
following operation:

L̂(χ,σ,m)

:= Ẑ

(
tr (

√
2ma − mf )

2

)
M̂(tan−1 σ ),me

E|φχ 〉,mf
EŜ(r)|0〉,ma

.

(26)

By performing some straightforward algebraic manipulations
and taking the infinite-squeezing limit, L̂ can be simplified
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FIG. 4. (a) This circuit is equivalent to performing non-Gaussian
measurement on the BSL. For compactness, the conditional phase
delay shown in Fig. 1(a) has been incorporated into the homodyne
detector at e. The input |ψ〉 should be interpreted as occupying the
symmetric subspace of modes x and a [Eq. (19)]. Left of the dotted
blue line, this circuit is equivalent to the macronode measurement
circuit for a dual-rail wire [30]. The parameter tr = tanh 2r sets the
strength of the ĈZ(tr ) gate. (b) Starting from panel (a), commute the
ĈZ gate rightwards past one beam splitter [using Fig. 3(b)] and then
past the other [using Fig. 3(c)]. The end result is three ĈZ gates as
shown. (c) Two of these ĈZ gates precede a measurement in the q̂

basis. We can use Fig. 3(d) to replace these with Ẑ gates. (d) The
green box is the measurement-based teleportation circuit [Eq. (25)].
(e) Final equivalent circuit, which implements L̂(χ,σ,m) [Eq. (26)].

further to

L̂(χ,σ,m) = Ẑ(
√

2ma)X̂(κ)R̂

(
−π

2

)
P̂ (τ )K̂(−2

√
2χ ),

(27)

where

m := (ma,me,mf ), (28)

τ := 4σ + 4χ (ma +
√

2mf ), (29)

κ := −2me

√
1 + σ 2 − 2σ (

√
2ma + mf )

−
√

2χ (ma +
√

2mf )2, (30)

FIG. 5. (a) Sublattice containing a region used to implement
an entangling gate by measurement-based quantum computation.
Detectors b and c measure q̂[(−1)n π

4 ] at sites marked with a red X,
thereby deleting the grayed-out links. Measurement of macronodes
2, 3, and 4 is described in the main text. The measurements on all
other modes can be chosen freely. (b) After the deletion in panel
(a), the middle six rows of modes are equivalent to this subgraph.
Measurements on this resource state can implement circuits as shown.
Here, the ĈZ(g) gate has weight g = 2 cot φ. Also, ω = (−1)k+1 3π

4
and μ = (−1)k π

4 .

and we have neglected the overall phase. We have included a
step-by-step proof in Appendix D for completeness.

The key feature of Eq. (27) is the cubic part, K̂(χ ),
which extends our scheme beyond merely Gaussian quantum
computation.

By sequentially applying the measurements described
above to a wire [as in Fig. 2(b)], we can generate arbitrary
single-mode unitary gates [3,15]. Note that with bounded
squeezing resources and without quantum error correction,
the effective length of the possible quantum computation is
bounded from above by a constant [42]. However, by using
encoded qubits [43], arbitrarily long qubit-level quantum com-
putation is possible provided that the overall squeezing levels
are sufficiently high and the effective qubit noise model is
compatible with viable fault-tolerant quantum-error-correction
strategies [36].

Next we show how to implement entangling operations
using homodyne measurements.

B. Entangling operations

On the BSL, it is possible to implement entangling opera-
tions using homodyne detectors [14]. Neighboring wires are
naturally coupled by the BSL graph structure unless deletion
measurements are applied, as described in the previous section.

By measuring a few columns of BSL modes, it is possible to
implement Gaussian unitary gates that interact many modes at
once. Because the form of such gates can be rather complicated
(generally involving many modes and measurement angles), it
is convenient to focus on the two-mode case, which is sufficient
for demonstrating universality.

Consider the portion of the BSL shown in Fig. 5(a). Perfor-
ming measurements of [p̂α(θ2α),p̂β(θ2β)], [p̂α(θ3α),p̂β(θ3β)],
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and [p̂α(θ4α),p̂β(θ4β)] on macronodes 2, 3, and 4, respectively,
implements a sequence of beam splitter and V̂ gates [see
Eq. (20)],

B̂2+,4+V̂2+

[
(−1)k

π

4
,θ3α,m1β,m3α

]

× V̂4+

[
θ3β,(−1)k

π

4
,m3β,m5α

]

× B̂2+,4+V̂2+(θ2α,θ2β,m2α,m2β)

× V̂4+(θ4α,θ4β,m4α,m4β), (31)

on inputs initially encoded within the symmetric subspace
of macronodes 2 and 4 (denoted by the subscripts 2+ and
4+, respectively) [14]. Above, k denotes the time index
of macronode 2. Next, we consider two examples of gates
included in this class.

If θ3α = θ3β = (−1)k+1 π
4 in Eq. (31) then up to displace-

ments and an overall phase,

(V̂ ⊗ V̂ )B̂ = B̂†(V̂ ⊗ V̂ ) (32)

(we omit subscripts and dependence on measurement vari-
ables). Thus, Eq. (31) is reduced to two copies of the single-
mode gate case described in the previous section.

By brute-force search we found that choosing⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ2α

θ2β

θ3α

θ3β

θ4α

θ4β

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(−1)k+1 π
8

(−1)k 3π
8

(−1)k π
4 + φ

(−1)k π
4 − φ

(−1)k+1 π
8

(−1)k 3π
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(33)

simplifies the gate in Eq. (31) to a gate of the form

[X̂(λ1)Ẑ(λ2) ⊗ X̂(λ3)Ẑ(λ4)]

×
[
R̂

(
(−1)k+1 3π

4

)
⊗ R̂

(
(−1)k

π

4

)]
ĈZ(2 cot φ) (34)

for some λ1, λ2, λ3, and λ4 [14].
Note that this implements a ĈZ gate (of variable weight)

up to a pair of local phase delays. These phase delays can be
undone using measurements further along the BSL, such as
with gates Û1 and Û2 in Fig. 5(b).

C. Adaptivity of the measurement outcomes

Above we described how to implement a universal set of
gates [see Eqs. (20), (27), and (34)]. In each case, however,
the gate has only been implemented up to a known phase-
space displacement that depends on the random measurement
outcomes. To make computation deterministic, one can apply
appropriate displacements at the 	 site in Fig. 1(a) or use
an adaptive measurement protocol—i.e., later measurement
bases are chosen in a way that depends on the values of prior
measurement outcomes [3].

Measurement protocols consisting only of homodyne mea-
surements are an exception. They can be implemented deter-
ministically without such adaptivity, though these protocols are
not universal and only implement Gaussian unitary gates [1,3].

To see this, note that the phase-space displacements form a
normal subgroup of the Gaussian unitaries. Therefore, the ran-
domness of the measurement outcomes only causes Gaussian
computations to differ up to a final phase-space displacement.
This in turn can then be dealt with by classically processing
the final homodyne measurement data.

We now consider the case of implementing L̂(χ,σ,m) from
Eq. (27). Suppose that X̂(s) and Ẑ(t) are unwanted phase-space
displacements resulting from the previous step of MBQC. Now
we consider commuting these so that they act after L̂(χ,σ,m):

L̂(χ,σ,m)Ẑ(t) = X̂(t)L̂(χ,σ,m), (35)

L̂(χ,σ,m)X̂(s)

= Ẑ(−s)X̂(τs − 2
√

2s2χ )L̂(χ,σ,m)P̂ (−4
√

2sχ ), (36)

where we neglect overall phases. Note that in the case of Ẑ(t),
commutation still results in a displacement operator. The X̂(s)
case is more complicated, generating additional position and
momentum displacements, as well as a shear. By adapting the
homodyne measurement angle θ = tan−1 σ in Eq. (36), we can
cancel out the effect of the shear P̂ (−4

√
2sχ ) at the price of

an additional contribution to the final phase-space displace-
ment. Modifying the shear parameter σ → σ ′ = σ + √

2sχ

in Eq. (36), equivalent to θ → θ ′ = tan−1(tan θ + √
2sχ ), and

applying the appropriate commutation relations, we get

L̂(χ,σ ′,m)X̂(s) = Ẑ(−s)X̂(ζ )L̂(χ,σ,m), (37)

where

ζ := 4sσ + 2
√

2sχ (mf + s) − 2me(
√

1 + σ ′2 −
√

1 + σ 2).
(38)

In other words, by making detector e (or equivalently,
the parameter σ ) adaptive, we can compensate for random
phase-space displacements and deterministically implement
non-Gaussian unitary gates, up to a final known phase-space
displacement. This is the only type of adaptive measurement
required by our protocol since unwanted displacements at the
end of the computation can be dealt with by postprocessing the
measurement data [3].

Our approach is very similar to the adaptive homodyne
techniques used in Ref. [22] for cubic-phase-gate teleporta-
tion. Implementing adaptive squeezing operations (e.g., at the
location 	) is experimentally infeasible, so it is significant that
our scheme only requires adaptive linear optics.

V. CONCLUSION

Here we have proposed a method using temporal modes for
generating the bilayer-square-lattice cluster state—a universal
resource for measurement-based quantum computation [14].
Our scheme only requires four sources of squeezed vacuum
modes (such as an optical parametric oscillator) and a few beam
splitters. The simplicity of this approach makes it a natural
two-dimensional generalization of one-dimensional resource
states generated in Refs. [5,6].

We showed by using properties of the bilayer square lattice’s
graph that it is equivalent under local phase delays to a Gaussian
pure state that has essentially the same graph and possesses
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approximate local nullifiers composed purely of either po-
sition or momentum operators. The verification of genuine
multipartite entanglement on cluster states that are equivalent
to pairwise-squeezed states is experimentally straightforward:
all modes are simply measured in the position and momentum
basis and appropriate linear combinations are taken, whose
variance is compared to an appropriate entanglement witness
[37]. Furthermore, these features are shared by an entire family
of cluster states that approximate trace-zero, self-inverse, ideal
(i.e., infinitely squeezed) cluster states.

Our proposal extends previous work by explicitly incorpo-
rating non-Gaussian elements into the measurement devices
[25–33]. Such elements enable universal quantum computa-
tion. Our approach conveniently minimizes the requirements
of measurement adaptivity, potentially reducing the noise due
to finite squeezing, although a proper analysis of this is left
to future work. One additional advantage of the chosen gate
set is that it is readily compatible with the universal gate set
for the Gottesman-Kitaev-Preskill qubit [43], which is a key
ingredient in the proof of fault-tolerant quantum computation
using continuous-variable cluster states [36].
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APPENDIX A: PROOF OF THEOREM 1

The theorem contains two claims. We prove them in order.
Our proof of the first claim proceeds in three steps.

(i) We directly construct a Gaussian pure state |�r〉 with
graph Z�,r from the ideal graph V and prove that it meets
the definition of an approximate CV cluster state whose ideal
graph is V.

(ii) We construct |r〉 by applying phase delays to |�r〉
and prove that we can define a set of approximate nullifiers
for this state (that are exact in the infinite-squeezing limit) that
contain position or momentum only (and no combinations of
the two).

(iii) We construct new linear combinations of these nul-
lifiers, without mixing position and momentum, and prove
that this new set of nullifiers has its support limited to the
neighborhood (as defined by V) of some particular node.

We define |�r〉 to be the Gaussian pure state whose graph
is [7]

Z�,r := i(sech 2r)I2n + (tanh 2r)V. (A1)

It follows that the set {Z�,r |r > 0} is a family of Gaussian
pure states indexed by a real parameter r (the overall squeezing
parameter) such that

lim
r→∞ Z�,r = V. (A2)

Any member of this set meets the definition [7] of an approxi-
mate CV cluster state with ideal graph V. Therefore, |�r〉 is an
approximate CV cluster state with ideal graph V. This proves
step (i).

Let

R̂θ := R̂(θ ) (A3)

for brevity. We now define

|r〉 := R̂⊗2n
π/4 |�r〉 . (A4)

Using the fact that

(
R̂⊗2n

π/4

)†
x̂
(
R̂⊗2n

π/4

) = 1√
2

(
I2n −I2n

I2n I2n

)
x̂, (A5)

then the rule for updating the graph for a Gaussian pure state
[7] gives

Z,r = (I2n + Z�,r )(I2n − Z�,r )−1. (A6)

To simplify this, we note that, from the assumptions of the
theorem, V = VT = V−1 ∈ R2n×2n and ∃L ∈ O(2n) such that

V = L(In ⊕ −In)LT, (A7)

where ⊕ represents the matrix direct sum (i.e., it creates a
block-diagonal matrix). This particular form is guaranteed
because tr V = 0 and all of V’s eigenvalues must be ±1. For
brevity later, we also define

z± := i sech 2r ± tanh 2r, (A8)

for which we have the following identity:

1 + z±
1 − z±

= ie±2r . (A9)

Using Eqs. (A7) and (A8), we can rewrite Eq. (A1) as

Z�,r = L(z+In ⊕ z−In)LT. (A10)

Plugging Eq. (A10) into Eq. (A6) and using Eq. (A9) gives

Z,r = iL(e2rIn ⊕ e−2rIn)LT. (A11)

Since Z,r is purely imaginary, we already know [7] that it con-
tains only q-q and p-p correlations (i.e., no q-p correlations).
But we still need to calculate the nullifiers.

The exact nullifiers for Z,r can be obtained from the usual
relation [7]

0 = (p̂ − Z,r q̂) |r〉 , (A12)

which, after left multiplication by −Z−1
,r , also implies

0 = (−Z−1
,r p̂ + q̂

) |r〉 . (A13)

For brevity later on, let us denote the top and bottom halves of
LT by

LT
+ := (In 0)LT, (A14)

LT
− := (0 In)LT. (A15)
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Multiplying Eqs. (A12) and (A13) on the left by LT
− and LT

+,
respectively, gives

0 = LT
−(p̂ − ie−2r q̂) |r〉 , (A16)

0 = LT
+(ie−2r p̂ + q̂) |r〉 . (A17)

In the limit r → ∞, we get(
LT

−p̂

LT
+q̂

)
|r〉 → 0. (A18)

This proves step (ii).
The final step is to find linear combinations of these

nullifiers that (a) do not mix q̂ and p̂ and (b) are local with
respect to V. The neighborhood of node j with respect to V is
given by the nonzero entries of the j th row (or, equivalently,
the j th column) of V.

Examining the structure of V shown in Eq. (A7), we see
that

V = L+LT
+ − L−LT

−. (A19)

Therefore, since LT
±L∓ = 0, we have I2n = V2 = L+LT

+ +
L−LT

−, and thus,

L±LT
± = 1

2 (I2n ± V). (A20)

Therefore, we can multiply Eq. (A18) from the left by 2(L− ⊕
L+) to obtain (

(I2n − V)p̂

(I2n + V)q̂

)
|r〉 → 0. (A21)

This proves step (iii) and therefore proves the first claim.
To prove the second claim, we simply evaluate Eq. (A11):

Z,r = iL(e2rIn ⊕ e−2rIn)LT

= i exp(2rV)

= i(cosh 2r)I2n + i(sinh 2r)V, (A22)

where we use the fact that V2 = I2n to obtain the last line. �

APPENDIX B: GATE GADGET ACTION

Here we directly calculate the effect of the circuit shown in Fig. 3(d). The operation in Fig. 3(d) is given by

E|ϕ〉,m := q2〈m| B̂1,2

∫
dsϕ(s) | s〉q2 (B1)

=
∫

dsϕ(s) q2〈m| B̂1,2

∫
dt |t〉p1 p1 〈 t |s〉q2 . (B2)

Using the fact that B̂1,2 |t〉p1
|s〉q2

is equivalent to an infinitely squeezed, displaced two-mode squeezed state (equivalent to an
EPR state [44]), i.e.,

B̂1,2 |t〉p1
|s〉q2

= X̂1

( −s√
2

)
X̂2

(
s√
2

)
Ẑ1

(
t√
2

)
Ẑ2

(
t√
2

)
1√
π

∫ ∞

−∞
dr |r〉q1

|r〉q2
(B3)

= X̂1

( −s√
2

)
X̂2

(
s√
2

)
1√
π

∫ ∞

−∞
drei

√
2tr |r〉q1

|r〉q2
(B4)

= 1√
π

∫ ∞

−∞
drei

√
2tr

∣∣∣∣r − s√
2

〉
q1

∣∣∣∣r + s√
2

〉
q2

, (B5)

we get that

E|ϕ〉,m = 1√
π

∫
dsϕ(s) q2〈m|

∫
dt

∫
drei

√
2tr

∣∣∣∣r − s√
2

〉
q1

∣∣∣∣r + s√
2

〉
q2

p1〈t | (B6)

= 1√
π

∫
dsϕ(s)

∫
dt

∫
drei

√
2tr δ

(
m − r − s√

2

)∣∣∣∣r − s√
2

〉
q1

p1〈t | (B7)

= 1√
π

∫
dsϕ(s)

∫
dteit(

√
2m−s)|m −

√
2s〉q1 p1〈t | . (B8)

Then, using that

|s〉q = 1√
2π

∫
dte−its |t〉p , (B9)
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this simplifies further:

E|ϕ〉,m =
√

2
∫

ds|m −
√

2s〉q1 q1〈
√

2m − s|ϕ(s) (B10)

=
√

2X̂1(−m)
∫

ds|2m −
√

2s〉q1 q1〈
√

2m − s|ϕ(
√

2m − q̂1) (B11)

= X̂1(−m)Ŝ1(ln
√

2)
∫

ds|
√

2m − s〉q1 q1〈
√

2m − s|ϕ(
√

2m − q̂1) (B12)

= X̂1(−m)Ŝ1(ln
√

2)ϕ(
√

2m − q̂1), (B13)

in agreement with Eq. (23).

APPENDIX C: MEASUREMENT-BASED CIRCUIT

Here we review the effective operation implemented by the circuit in Fig. 3(e) for an input state |ψ1〉. After the ĈZ gate,
we consider measuring the top mode in the P̂ †(tan θ )p̂P̂ (tan θ ) = p̂ + (tan θ )q̂ basis, which is equivalent to measuring p̂(θ ),
obtaining outcome m, which is multiplied by sec θ to obtain the effective outcome m′ = m sec θ of the desired measurement [1].
The output state |ψ2〉 is given by

|ψ2〉k ∝ pj
〈m′| P̂j (tan θ )ĈZ(g) |ψ1〉j ⊗

(
exp

[
− q̂2

k

2e2r

]
|0〉pk

)
. (C1)

Taking the infinite-squeezing limit (r → ∞),

lim
r→∞ |ψ2〉k = Pr(m′)−

1
2

pj
〈m′| ĈZ(g) |ψ ′

1〉j ⊗ |0〉pk
, (C2)

where |ψ ′
1〉 := P̂ (tan θ ) |ψ1〉 and where Pr(x) is the probability of outcome x in the infinite-squeezing limit. Next, we use squeezers

and π -phase delays to convert the ĈZ gate weight from g �→ 1:

lim
r→∞ |ψ2〉k = Pr(m′)−

1
2

pj
〈m′| Ŝ†

k(ln |g|)R̂†
k(Im ln g)ĈZ(1)R̂k(Im ln g)Ŝk(ln |g|) |ψ ′

1〉j ⊗ |0〉pk
(C3)

= Pr(m′)−
1
2 Ŝk

(
ln

1

|g|
)

R̂
†
k(Im ln g) pj

〈m′| ĈZ(1) |ψ ′
1〉j ⊗ |0〉pk

. (C4)

The final part of this expression is the standard weight-1 canonical continuous-variable cluster state teleportation circuit [1,3].
The output is well known:

Pr(m′)−
1
2

pj
〈m′| ĈZ(1) |ψ ′

1〉j ⊗ |0〉pk
= X̂k(m′)R̂k

(
π

2

)
|ψ ′

1〉k. (C5)

Combining Eq. (C5) with Eq. (C4), plugging in g = −tr/2, and taking the infinite-squeezing limit results in

lim
r→∞ |ψ2〉 = Ŝ(ln 2)R̂†(π )X̂(m′)R̂

(
π

2

)
|ψ ′

1〉 (C6)

= Ŝ(ln 2)X̂(−m′)R̂
(

−π

2

)
|ψ ′

1〉 (C7)

= X̂(−2m′)R̂
(

−π

2

)
Ŝ

(
ln

1

2

)
|ψ ′

1〉 (C8)

= X̂(−2m sec θ )R̂

(
−π

2

)
Ŝ

(
ln

1

2

)
P̂ (tan θ ) |ψ1〉 (C9)

= M̂θ,m|ψ1〉, (C10)

in agreement with Eq. (25).

APPENDIX D: STEP-BY-STEP SIMPLIFICATION OF L̂

Here we begin with the sequence of operations implemented by Fig. 4(e) and show how it can be simplified to Eq. (27). For
brevity in what follows, we define the following combinations of measurement outcomes:

m± :=
√

2ma ± mf

2
. (D1)
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Using this compact notation, we rewrite Eq. (26) as

L̂(χ,σ,m) = Ẑ(trm−)M̂(tan−1 σ ),me
E|φχ 〉,mf

EŜ(r)|0〉,ma
. (D2)

For convenience, we repeat the definitions

M̂θ,m := X̂(−2m sec θ )R̂

(
−π

2

)
Ŝ

(
ln

1

2

)
P̂ (tan θ ), (D3)

E|ϕ〉,m := X̂(−m)Ŝ(ln
√

2)ϕ(
√

2m − q̂), (D4)

from Eqs. (25) and (23), respectively. For |ϕ〉 = Ŝ(r) |0〉, the ϕ term in Eq. (D4) is a normalized Gaussian envelope with variance
e2r/2. In the infinite-squeezing limit, this term acts trivially and can be ignored.

Applying the relevant definitions and taking the infinite-squeezing limit gives

L̂(χ,σ,m) ∝ Ẑ(m−)X̂(−2me

√
1 + σ 2)R̂

(
−π

2

)
Ŝ

(
ln

1

2

)
P̂ (σ )X̂(−mf )Ŝ(ln

√
2)φχ (

√
2mf − q̂)X̂(−ma)Ŝ(ln

√
2), (D5)

where the ∝ sign indicates that we have omitted an overall phase. Now, we commute the Ŝ(ln
√

2) gates leftwards so they cancel
with Ŝ(ln 1

2 ), giving

L̂(χ,σ,m) ∝ Ẑ(m−)X̂(−2me

√
1 + σ 2)R̂

(
−π

2

)
P̂ (4σ )X̂

(−mf

2

)
φχ (

√
2(mf − q̂))X̂

(−ma√
2

)
. (D6)

Next, we commute displacements to the left, step by step:

L̂(χ,σ,m) ∝ Ẑ(m−)X̂(−2me

√
1 + σ 2)R̂

(
−π

2

)
P̂ (4σ )X̂(−m+)φχ (

√
2(mf − q̂) + ma) (D7)

∝ Ẑ(m−)X̂(−2me

√
1 + σ 2)R̂

(
−π

2

)
X̂(−m+)Ẑ(−4σm+)P̂ (4σ )φχ (

√
2(mf − q̂) + ma) (D8)

∝ Ẑ(
√

2ma)X̂[−2me

√
1 + σ 2 − 2σ (

√
2ma + mf )]R̂

(
−π

2

)
P̂ (4σ )φχ (

√
2(mf − q̂) + ma). (D9)

Using φχ (s) = eiχs3/3, the rightmost term in Eq. (D9) can be expanded as

φχ (
√

2(mf − q̂) + ma) = ei
χ

3 [
√

2(mf −q̂)+ma ]3
(D10)

= (phase) e−i
√

2χ(ma+
√

2mf )2q̂ ei(2χma+2
√

2χmf )q̂2
e−i

2
√

2χ

3 q̂3
(D11)

= (phase) Ẑ[−
√

2χ (ma +
√

2mf )2]P̂ (4χma + 4
√

2χmf )K̂(−2
√

2χ ). (D12)

Once plugged into Eq. (D9), the Ẑ operator can be commuted to the left. We now give the final result:

L̂(χ,σ,m) = Ẑ(
√

2ma)X̂(κ)R̂

(
−π

2

)
P̂ [4σ + 4χ (ma +

√
2mf )]K̂(−2

√
2χ ), (D13)

where we have now neglected (rather than merely omitted) the overall phase, and where

κ = −2me

√
1 + σ 2 − 2σ (

√
2ma + mf ) −

√
2χ (ma +

√
2mf )2 (D14)

from Eq. (30). This result is reported in Eq. (27).
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