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General implementation of arbitrary nonlinear quadrature phase gates
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We propose general methodology of deterministic single-mode quantum interaction nonlinearly modifying
single quadrature variable of a continuous-variable system. The methodology is based on linear coupling of
the system to ancillary systems subsequently measured by quadrature detectors. The nonlinear interaction is
obtained by using the data from the quadrature detection for dynamical manipulation of the coupling parameters.
This measurement-induced methodology enables direct realization of arbitrary nonlinear quadrature interactions
without the need to construct them from the lowest-order gates. Such nonlinear interactions are crucial for more
practical and efficient manipulation of continuous quadrature variables as well as qubits encoded in continuous-

variable systems.
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I. INTRODUCTION

Quantum technology employing quantum information pro-
cessing with qubits is constrained to potentially large but
always finite-dimensional Hilbert spaces [1,2]. To move be-
yond this limitation and fully process and simulate infinite-
dimensional systems one has to take advantage of continuous-
variable (CV) methods [3,4]. Moreover, CV methods are
suitable for manipulating qubits encoded in the subspace
of infinite-dimensional systems [5—7]. Such a hybrid qubit-
CV approach has turned out to have practical advantages
in quantum optics since it can take advantage of robust
encoding of qubits and deterministic operation with CV
methods [7,8]. The experimentally accessible CV operations
are linear transformations of continuous quadrature operators
and can be constructed from Hamiltonians of up to quadratic
order of the operators [9]. Such linear transformations can
be deterministically performed for systems in both Gaussian
and non-Gaussian states [10]. They cannot, however, provide
the nonlinear non-Gaussian dynamics which is necessary
for accessing the full quantum analog simulation [4] and
computation [3]. For that we require elementary nonlinear
transformations which require Hamiltonians with cubic or
higher-order nonlinearity [11].

Gottesman, Kitaev, and Preskill (GKP) stimulated long-
standing theoretical and experimental development of the
missing tools required for the elementary third-order (cubic)
nonlinear phase gate [6]. We have recently expanded upon the
original concept by designing a deterministic cubic nonlinear
phase gate for a traveling beam of light based on adaptive
continuous-variable measurement and linear feedforward con-
trol [12]. Such cubic gates can be used as elements in a suitable
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sequence of noncommuting unitary operators that, together
with available linear gates, can be used for realization of
an arbitrary unitary operator of CV systems [11,13]. Such
operators are sufficient for universal computing with both
CV and, through the hybrid approach [7], qubit quantum
systems. However, even though the cubic gates can be used
in this capacity, it is not always practical as the number
of required elementary gates quickly grows with the order
of the desired nonlinearity. For example, the fourth-order
Kerr nonlinearity necessary for realizing controlled-NOT gates
of qubits, quantum nondemolition measurement of photon
number [14], and creation of Schrodinger cat states [15]
requires tens of individual cubic or lower-order gates in
order to be realized with sufficient precision [16]. Operations
of even higher orders are required for universal processing
of CV quantum systems. Hybrid implementation of unitary
quantum Toffoli gate for qubits [2,17] demands nonlinearity
of the sixth-order and unitary gates for manipulation with CV
encoded qubits have even stronger requirements [18]. Beyond
quantum computing, such high-order operations would also
allow quantum simulation of exotic dynamics [5] and open
up new possibilities for manipulating quantum information.
However, composing these higher-order gates from the lowest-
order elements quickly becomes experimentally intractable
as the order increases. Fortunately, the number of required
operations can be dramatically decreased if at least some of the
high-order nonlinear operations can be implemented directly
[16].

In this paper we present a full methodology for directly
realizing deterministic nonlinear quadrature phase gates of
an arbitrary order. These gates require a set of ancillary
harmonic oscillators linearly coupled to the target system and
measured by quadrature detectors. The required nonlinearity
is obtained by nonlinear classical feedforward control [19].
In order to compensate for quantum noise appearing due to
the deterministic nature of the gates, the ancillary oscillators
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need to be initialized in nonlinearly squeezed states. Such
states can be prepared in advance by probabilistic methods
[20] or on different platforms and stored before they are
needed [21,22]. We will describe the overall strategy and then
focus on the illustrative example of the fourth-order (quartic)
nonlinear gate. The proposal is implementable with the current
optical hybrid technology [7] and can be incorporated into
a scalable architecture for optical quantum computing [23],
making it suitable for efficient realization of universal quantum
computing with qubits and CVs. It can be also adapted to
other physical platforms, such as phononic modes in quantum
electromechanical and optomechanical systems [24], motion
modes of trapped ions [25], microwave radiation in cavity QED
[26], or collective spins of atoms [27,28].

II. CV QUANTUM OPERATIONS

The ultimate tool of CV quantum information processing
is a unitary transformation realizing dynamics of an arbitrary
Hamiltonian [11]. For CV harmonic oscillators, which are
described with the help of quadrature operators X and p,
with [X, p] = i, the arbitrary Hamiltonian can be expressed as
a bivariate polynomial A = Dok cr (& p! + p'&F). The ele-
mentary technique that allows construction of such operators
relies on using a number of simple operations and merging
them together as

elAezBe—lAe—tB %eE[AYB]‘ (D

This technique, originally presented in [11] and in larger
detail studied in [13,16], allows combining operations with
different Hamiltonians into their composites. When the orders
of the constituent Hamiltonians are N4 and Np, the resulting
Hamiltonian is of the order N = N4 + N — 2. This means
that combining operations of at least third order is capable of
creating an operation with order higher than that of its con-
stituents, which can ultimately lead to creation of operations
with arbitrary orders. The most elementary operation suitable
for this operation is the cubic phase gate with Hamiltonian
A o £3[11,12]. However, as the order of the desired operation
grows, we can start encountering scaling issues. The exact
quantity of required operations strongly depends on their
specific forms, but, for example, realizing operation of 10th
order requires at least 2° individual third-order operations
[29]. This issue could be resolved by realizing at least some
of the higher-order operations directly, without the need to
construct them from the lowest-level components repeatedly
using formula (1).

In the Heisenberg representation, the cubic phase gate
transforms operators of a quantum state as ¥’ = % and p’ =
p — 3x3x2, where x3 is the cubic interaction gain. It can be
realized by a quantum circuit depicted in Fig. 1(a). The two
oscillators, the signal and the ancilla, are coupled through a
QND gate, which is characterized by interaction Hamiltonian
Hgnp = X pa. The £, quadrature of the ancilla is then measured
and the obtained value is used to drive feedforward corrections
of the first (displacement) and second (squeezing) orders.
The coupling and the feedforward operations are individually
Gaussian, but the ancillary state A3 is not. In order to compen-
sate for the backaction noise, the ancilla A3 has to be prepared
in the cubic squeezed state, which has fluctuations of operator
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FIG. 1. Schematic circuits for various implementations of nonlin-
ear gates. QND: quantum nondemolition interaction; QM: quadrature
measurement; Ak: ancillary state of the kth order squeezed in
p — Nxn&¥-'. ¢ unitary realization of kth-order nonlinear gate
with arbitrary strength. (a) Cubic gate with N = 3; (b) (N + 1)th-
order gate implemented recursively; (c) Nth-order gate with stream-
lined feedforward; (d) Nth-order gate implemented in the measure-
ment induced way. G represents a tunable Gaussian operation, which
can be either QND or beam splitter. A0 is ancillary state squeezed
in X.
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Pa — 3x3%2, where the parameter x3 sets the strength of the
nonlinearity, reduced and ideally approaching zero.

The principle can be extended to nonlinear Hamiltonians of
higher order, H o £V. They can be realized by employing an
ancilla with reduced fluctuations in quadrature p — N yy£"V~!.
However, in this case, the required feedforward operations
are of orders 1,...,N — 1, see Fig. 1(b), and each of them
requires an ancilla squeezed in a specific nonlinear quadrature.
So, while the same method can be used for realizing these
lower-order nonlinear circuits in such a recursive manner,
the total number of gates required for realizing operation of
Nth order is 2V—3, which is again the undesirable exponential
scaling.

Fortunately it is possible to merge the required feedforward
operations so that only N — 2 individual nonlinear gates are
needed in total. The scheme is depicted in Fig. 1(c) and it
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relies on a sequence of N QND interactions with N ancillary
states with reduced fluctuations in quadratures pax — Ekﬁﬂl s
where k = 1, ..., N and the parameter §; = =1 characterizes
the orientation of the state. Apart from the orientation, the
resource states do not depend upon the measurement results.
The strengths of nonlinearities can be modified by setting the
gains of the Gaussian QND operations, which can be realized
by fast feedforward [19]. This is significantly more feasible
than preparing tailored quantum states. Also, for k = 1,2 the
required states are Gaussian and the gates are not nonlinear. As
a consequence, the required operation can be usually realized
in a different manner [30]. For the sake of resulting formulas,
though, we are going to use the gate-based expression. The
QND operations transform the quadrature operators of the
signal s and the kth ancillary mode Ak according to

Xy =R, Py = Ps + 2Pax
Fpx = Xak — ks, Pax = Pax- 2)
The ancillary modes are then measured, yielding values
qr = Xax — 71 Xs. The gains z; of the QND operations are going
to be functions of the previously measured values. To find them,
we can express the final quadrature relations as
N
fout = Kin: Pow = Pin + Y _2jPaj- 3)
J=1
where z; are yet to be determined. We can use the nonlinear
property of ancillary states and the relationship between the
operators and the measured quadratures,

~ k=1 A n
Pax = &ln s Xak = 2 fin + i, 4)

where g, are the values obtained by the quadrature detectors,
and arrive at the final form of the p-quadrature relations as

N-—1 N—k
N N N N—j
Pow = Pin + Y D 5N—j+1( k J)
k=0 j=1
X (gn—j+) T @y ) )

We can see that transformation given by (3) and (5) realizes the
desired £V operation when the QND gain is proportional to the
desired nonlinear operation gain, (zy)" = N xy with &y = 1,
and the remaining gains satisfy a set of N — 1 equations

N—k .
Z EN—j+1 <N k_ J)(CINjJrl)Njk(ZNjJrl)kJrl =0 (6
=

forallk =0, ...,N — 2. This is a set of polynomial equations
for z;, which is already in the upper diagonal form and has
always a unique solution when the parameters &; can be
adjusted. More importantly, the solution can be found in a
recurrent form, so values of each z; and &; are functions only
of the already known quantities z,,, &,,, and g,,,, where m > j.
Also note that the measured value ¢g; is not needed and the
measurement therefore does not need to be performed.

For feasible tests of the operation which could be per-
formed in the near future we can consider engineering the
resource states approximatively by assembling them in a
limited Hilbert space [12,31]. This can be done with optical
detectors [20,32,33] or, for larger number of ancillas, with
the help of two-level quantum systems [34,35]. The available

dimension of the Hilbert space sets limits to the fluctuations
of the nonlinear quadrature and higher orders of nonlinearity
require more ancillary photons or two-level systems to reach
the same squeezing of residual noise. However, when the
available dimensions of the Hilbert spaces for each of the
resource states are equal, the noise added during the direct
implementation of a single high-order operation tends to be
lower than if the operation was constructed from the lower-
order gates (see the Appendixes for the details).

III. NONLINEAR MEASUREMENT-INDUCED APPROACH

Applying elementary quantum circuits directly to a quan-
tum state is a very straightforward approach. However, in
practice it is often beneficial to take advantage of the inherent
entangling property of quantum states and impress the desired
nonlinearity onto the states through a suitable measurement
performed on a suitable subsystem. So while the components of
the circuitin Fig. 1(c) already follow the measurement-induced
paradigm, itis sensible to take this path to its logical conclusion
and perform the full gate completely through a measurement.
The scheme is sketched in Fig. 1(d) and it consists of a
single QND interaction coupling together the initial system
with ancillary system As prepared in a sufficiently squeezed
vacuum state. This ancillary system is then subjected to the
in-line nonlinear gate consisting of QND gates with parameters
Zx coupling the system to N ancillary states, which are
subsequently measured by X-quadrature detectors. In addition,
the remaining ancillary mode is measured by a p-quadrature
measurement, which is used to erase the influence of the carrier
ancilla. The individual X-quadrature measurements provide
measurement results gy = X; — zxXin. After the initial system
is displaced by the measured value of the final p-quadrature
measurement, y = poy + fo:l Pak, the quadrature operators
of the initial system can be exactly described by (3) and
therefore subsequently corrected in the same manner. Under
ideal conditions the measurement-induced and the in-line
schemes are mathematically equivalent.

The QND coupling can be also replaced by a symmetric
passive linear coupling, which is described by interaction
Hamiltonian I:IBS & X1 P2 + p1X2. This coupling, which for
optical systems stands for the ubiquitous beam splitter, is
passive; it only transfers energy between the systems instead
of creating it. As a consequence, it often is more feasible
and less prone to noise and imperfections, and at optical
frequencies it can work with arbitrarily high speed. On the
other hand, the mixing of both quadratures makes it often
more difficult to treat, as compared to the QND. In our
scenario, however, the operations can be made equivalent.
To see this, let us again consider the measurement-induced
scheme of Fig. 1(d). The first beam splitter can have an arbitrary
transmissivity #y. However, it is also preceded by the Gaussian
squeezing operation, which ensures that X, = Xi,. After the
ancillary state AO interacts with the first beam splitter of the
nonlinear measurement block, with positive transmissivity ¢y
and reflectivity 7y, its quadratures transform to

AN R R A(N R R
xiw) = INXin +7TNXaN, P;o) =tnPin +rnPan, (1)

and the ¥ quadrature measurement of the nonlinear ancilla
provides value gy = tyXay — ryXin. In order to simplify the
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description we can now use this measured value and use
it to transform the state (7) by Gaussian displacement and
squeezing into

~(NY o A(NY

2 A ~
a0 =%in, Pay = tyDPin FINTNDAN. (3

Since these operations are Gaussian, as is the rest of the
active components of the circuit, it is enough to consider them
virtually and include their influence only into the measured
data. Here we treat them as physical operations to simplify
the derivation. After the sequence of all N beam splitters
and erasing the influence of the carrier ancilla, the quadrature
operators of the signal can be expressed as

N N
. R ~ ~ 214
Xout = Xin, Pout = Pin + Z tjr; Htk DAj- €))

The form is again equivalent to (3). The coefficients
tjrj lecv: nn 2 which need to be compensated are more involved
than in the previous scenarios, but the final set of equations for
the beam splitter coefficients can be solved in the same manner
as for the QND scenario.

IV. QUARTIC NONLINEARITY

This specific gate, a step above the elementary cubic nonlin-
earity, is strongly beneficial in realization of Kerr nonlinearity
[16]. The particular linear optical scheme is in Fig. 2. The
implementation follows the steps drawn in the general section
with only few differences. The ancillary states are prepared
with squeezing in quadratures pax — k Xk)?]/iil, where the
parameters y; are not related to the strength of the nonlinearity
and only represent additional degrees of freedom which can be
exploited during the preparation. The squeezing operations (8)
previously considered to simplify the description are missing.
The last two blocks corresponding to ancillas of orders 1 and
2 are also missing; these two operations are Gaussian and are

‘A
T (feed-forward

A3 /—f*»lb 4,
m_/ b q,

D/ M -

FIG. 2. Scheme for the optical realization of the fourth-order
nonlinear circuit. BS: beam splitter; HD: homodyne detection; e/
operation realizing @ phase shift; e’*dw: p-quadrature displacement
by value pyisp; to, 14, t3: splitting ratios of respective beam splitters;
¥, q4, q3: values measured by the homodyne detectors.

therefore implemented in another way. The displacement is
implemented directly. The squeezing is realized by adaptive
measurement of the quadrature rotated by 6, which is a param-
eter that depends on previous measurement results [30]. The
three values measured by the optical homodyne detectors are
q4 = —roraXin — toraXao + 14X a4, (10)
q3 = —rolarskin — folarsXao — rar3¥asa + 3843, (11)
y = sin6(rotatakin + totat3 40 + rat3fas + r3¥43)
+ o8 0(rotats Pin + fotatz Pao + ratzpas + r3paz).
(12)

The splitting ratio of the second beam splitter, as well as the
required phase shift, depend on the already measured results:

3 3
r3 Adxqr
m(—) = ——"q, (13)
13 1y
6312 1241282
ang = %0, PR (e g
3 4

and fast electronic circuits [7] are required to process the data
quickly enough to provide the required feedforward. Finally,
the remaining signal state needs to be displaced by a single
value,

2

» 4X4ror4q3 3xaror3 r4r3q +q
disp = — - 4+ q3
P g Tt o \ n

ror. ro
tan 60 — —q2, (15
()t}t% <q4 + Q3> + tot4t3 cos O . (15)

in order to transform the output quadrature operators to

Xour = toXin — roX a0, (16a)

. 1 . Axardr to 3
Pout = _|:pin + 40 4 ( Xin + _xAO>
R) t4 rO

rorsa
— (Pas — 4xat)y)
foly
1
rora | 4xa 3
+— |:_(r0r4x1n + toraX a0 — f4xA4)]
Tola | X314

x (Paz — 3x3%35)- (16b)

We can see that the operators correspond to the input
signal, squeezed by factor 7y, transformed by the fourth-order

nonlinear phase gate with effective strength x; = %. The
remaining terms represent the imperfections arisiflg from
ancillary states—both the finite linear squeezing in the mode
AQ and the finite nonlinear squeezing in modes A4 and A3.
The last term depends on the input state as well as both
nonlinear ancillas, which are caused by the coupling parameter
t3 depending on the measurement of A4. As a consequence, if
we assume that the input state is suitably limited in the phase
space, for good performance the nonlinear ancillary states
should satisfy

([A(Pas = 3x:8%)]) < (17)
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This represents an example of the squeezing requirement for a
new class of nonlinear squeezed states. The dynamical problem
of implementing any nonlinear phase gate has been therefore
turned into the static problem of preparing suitable quantum
resource states.

V. CONCLUSION

The presented methodology has two revolutionary advan-
tages over the previous methods. First, further integration of
feedforward to adjust the coupling coefficients allows one
to manipulate with strengths of the nonlinear operation by
using only Gaussian tools. As a consequence, there is no
need to prepare nonlinear quantum states for specific strengths
of the nonlinearity, which significantly streamlines the state
preparation phase of the circuit, as it moves all non-Gaussian
requirements to preparation of only universal single-mode
nonlinear squeezed states. Second, the ability to merge the
necessary feedforwards into a single sequence removes the
exponential scaling in the number of operations. The higher-
order ancillary states exhibit more complex quantum super-
positions, but reducing their overall number leads both to
easier implementation and better performance. Together these
innovations with the current development of time-resolved
optical quantum technology [22] open up the possibility of
feasible and efficient experimental realization of the nonlinear
phase gates and their application to CV simulation and hybrid
qubit-CV computation [3-5,7].
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APPENDIX A: APPROXIMATIVE NONLINEAR
SQUEEZED STATES

The deterministic nonlinear quadrature phase gates require
resource states that are squeezed in a specific nonlinear quadra-
ture. Gate implementing operation 2" needs states for which
the quadrature moment given by ([A(p — £¥~1)]?) is reduced
and ideally approaching zero. Such states can be approxima-
tively prepared by constructing specific states in a limited
dimensional Hilbert space and then suitably shaping them
by Gaussian operations [31]. The optimal form can be found
by extending the approach of [30] and finding the minimum
eigenvalue and the corresponding eigenstate of operator

D—1

YO.d) = Y (ml[H() — dP|n)im)(nl,

m=0,n=0

(AL)

where N is the order of the required nonlinearity, D is the
available dimension of the Hilbert space, and

% N-1
JQ) =Ap — (X) : (A2)

variance

N—-1

FIG. 3. Variances of the nonlinear quadrature y,y = p — X
for states prepared in a limited Hilbert space with dimension D.

The real parameters A and d are optimized over and correspond
to the corrective Gaussian operations of squeezing (A) and
displacement (d) applied to the produced state. We have per-
formed the optimization and the minimal variances obtainable
for varying dimension of the Hilbert space are shown in Fig. 3.

APPENDIX B: COMPARISON OF DIFFERENT
ARCHITECTURES FOR IMPLEMENTATION
OF THE QUARTIC GATE

Beside the direct approach we are advocating in the
manuscript, high-order nonlinear gates can be also composed
as a sequence of nonlinear gates of lower order [13]. The
number of required lower-order gates is substantially higher,
but they are easier to implement. The comparison of the two
methods can be made in terms of the total amount of excess
noise that gets added during the implementation. The excess
noise depends on the architecture of the gate and on the
properties of the nonlinear ancillary states, which are ideally
squeezed in the nonlinear quadratures 4y = p — £V~

Let us consider an example of the quartic operation with
Hamiltonian H = Xax2. According to [13] it can be decom-
posed into a sequence of six cubic gates and four Gaussian
gates as per

[—ex?,[e£?,ep°]] = 2€2%, (B1)
where € = (zgﬂ)'/ 3. In principle, each of the three operations
used in the sequence could have a different coupling constant,
but they would all have to be much smaller than one and the
total interaction strength x4 would be always proportional to
their product. In practical scenarios, detailed optimization over
the three parameters would probably improve performance, but
for the purpose of this benchmark we will consider them equal,
because this scenario maximizes their product. If we neglect
the error terms proportional to €* and assume that the Gaussian
gates can be realized perfectly, only the cubic gates contribute
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to the noise, each one by
Ns = 2) ((APaz)?). (B2)

In total, the noise contributes to different quadratures, but
the total amount is Nge. = 6/V3. It should be also noted that
separating the operation into two sequences, each one with half
the strength of the total, generally leads to a higher amount of
added noise and is therefore unpractical.

If we are attempting to realize the same operation directly,
according to our proposal, the output quadrature can be found
as (5):

Pout = Pin + 4XaX3, — 24944 — 239453, (B3)

where z4 = (4x4)"/* and z3 = —[9x4(X a4 — z4%0)]"/> and we
have neglected the terms which can be corrected by Gaussian
operations. The total added noise can be then estimated to be

Nair = (4x0)? (A9aa)?) + Oxa)3 ((Bag — zafin) ) (APaz)).
(B4)

To compare these two expressions we need to set some
assumptions about our system. We shall consider x4 = 0.1 and
an input state which has distribution of the %;, quadrature given

by Gaussian function with zero mean and variance A? = 5. The
second assumption is relevant for (B3), because the input state
affects the distribution of z3. Keep in mind that any state which
in the x representation is narrower than the assumed function
would receive less noise. Finally, for our resource states, we
shall consider realistic approximations with D = 4, which can
be feasibly prepared already with the present technology. In
this dimension, the minimal variances are, as can be seen in
Fig. 3, (A$43)*) ~ 0.5 and ((A§a3)*) ~ 1.

Under these assumptions, the amounts of total added noise
can be estimated to be

Niee = 4.1{(AF43)7) = 2 (BS)
and
Nair ~ 0.63((A942)?) + L12((A943)*) ~ 1.2.  (B6)

We can therefore see that the proposed direct scheme suggests
superior performance even though the total Hilbert space of
the resource states is significantly smaller, D> < D®. This
statement remains true for all the checked dimensions, up
to D = 15. This result is immediately relevant for the first
proof-of-principle experiments aimed at demonstrating exotic
higher-order quantum nonlinearities.
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