
PHYSICAL REVIEW A 97, 053814 (2018)

Heralded creation of photonic qudits from parametric down-conversion using linear optics
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We propose an experimental scheme to generate, in a heralded fashion, arbitrary quantum superpositions of
two-mode optical states with a fixed total photon number n based on weakly squeezed two-mode squeezed state
resources (obtained via weak parametric down-conversion), linear optics, and photon detection. Arbitrary d-level
(qudit) states can be created this way where d = n + 1. Furthermore, we experimentally demonstrate our scheme
for n = 2. The resulting qutrit states are characterized via optical homodyne tomography. We also discuss possible
extensions to more than two modes concluding that, in general, our approach ceases to work in this case. For
illustration and with regards to possible applications, we explicitly calculate a few examples such as NOON states
and logical qubit states for quantum error correction. In particular, our approach enables one to construct bosonic
qubit error-correction codes against amplitude damping (photon loss) with a typical suppression of

√
n − 1 losses

and spanned by two logical codewords that each correspond to an n-photon superposition for two bosonic modes.
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I. INTRODUCTION

Photons are an essential ingredient of most protocols
for quantum information processing and quantum commu-
nication, as they can serve as carriers of “flying quantum
information,” especially in the form of flying qubits. How-
ever, experimentally, deterministic schemes to prepare optical
quantum states remain so far within the regime of Gaussian
states or classical mixtures of Gaussian states, though, in
principle, third-order nonlinear optical effects or interactions
with a finite-dimensional system enable one to step out of the
Gaussian realm into that of non-Gaussian quantum states [1].
Highly nonclassical, non-Gaussian states of traveling light,
pure enough to show negative values in their Wigner functions
[2], have been created with probabilistic, heralded schemes
[3–12]. These rely on the non-Gaussianity or nonlinearity
induced by a photon detection. Since deterministic, 100%-
efficient quantum nondemolition measurements of photon
numbers [13] are currently unavailable in the optical domain,
a photon detection would destroy the measured optical field.
Nonetheless, the non-Gaussianity could still be transferred
to an outgoing, propagating optical quantum state through
quantum correlations.

For the optical resources before the photon detections,
two-mode squeezing correlations between signal and idler
fields from parametric down-converters are typically utilized.
Beyond heralding single photons [3], in previous experi-
ments, an arbitrary superposition of photon-number states
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up to three photons, i.e., c0 |0〉 + c1 |1〉 + c2 |2〉 + c3 |3〉 with
c0,c1,c2,c3 ∈ C, was experimentally generated in a heralded
fashion by employing three photon detectors. Before these
detections, the idler fields in the heralding lines are combined
with auxiliary coherent fields [6,7]. On the other hand, by
utilizing the interference of the idler fields in the heralding
lines, arbitrary single-photon qubits encoded into two modes,
i.e., c10 |10〉 + c01 |01〉 with c10,c01 ∈ C (so-called dual-rail
qubits), were experimentally produced [8,9].

It is then an interesting question whether we can create
an arbitrary superposition of photon-number states with, for
instance, a total photon number of two distributed in two
modes, i.e., c20 |20〉 + c11 |11〉 + c02 |02〉 with c20,c11,c02 ∈
C. This set of quantum states forms a qutrit whose three-
dimensional Hilbert space is spanned by the three basis states
{|20〉 , |11〉 , |02〉}. One can think of this qutrit also as a
spin-1 particle with a spin value 1 corresponding to half
of the total photon number, (n1 + n2)/2 = n/2 = 1, and the
three possible spin projections corresponding to half of the
photon-number differences of the two modes, (n1 − n2)/2 =
{1,0, − 1}. More generally, an arbitrary d-level spin particle
can be represented by two modes with a spin value corre-
sponding to (n1 + n2)/2 = n/2 and d = n + 1 possible spin
projections corresponding to (n1 − n2)/2 (this is also referred
to as the Schwinger representation). In the most general case,
a set of number states with a total of n photons distributed
in m modes, {|n1, . . . ,nm〉} with

∑m
k=1 nk = n, spans a d-

dimensional Hilbert space where

d =
((

m

n

))
=

(
m + n − 1

n

)
= (m + n − 1)!

n! (m − 1)!
. (1)

The qutrit above corresponds to the case of n = 2 and m = 2,
which is one special case of the Schwinger representation
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with generally m = 2 and arbitrary n. Such quantum states
living in a higher-dimensional Hilbert space are important
because, for instance, a quantum error-correction code can be
constructed by utilizing a certain subspace as the code space.
For this purpose, the Hilbert space of the physical system
must be big enough such that a logical quantum state can be
robustly mapped between code space and error spaces. More
specifically, multiphoton states can possibly be tolerant against
amplitude damping and, indeed, when qubit information is
encoded, for example, as α[(|40〉 + |04〉)/√2] + β |22〉, the
information does not get lost by a random single-photon
annihilation [14].

Here we discuss how to create such superposition states
in a heralded scheme, utilizing two-mode squeezed states and
linear optics in the heralding idler lines. As a consequence, it is
shown that an arbitrary superposition with total photon number
n can be, in principle, created for the case of mode number
m = 2, leading to an arbitrary qudit with d = n + 1. However,
we also find that our scheme cannot be generally extended to
the cases of m � 3. Here we also experimentally demonstrate
our scheme for the two-mode qutrit case (n = 2 and m = 2).
Our scheme is directly applicable to the construction of bosonic
codes against amplitude damping [14]. The scheme described
here can possibly be combined with recent memory schemes
[15,16], by which the success event rate may be considerably
improved. This paper is organized as follows. In Sec. II,
we review how the creation of a heralded single photon is
mathematically described, and then we discuss how this can
be extended to a single-photon qubit with n = 1 and m = 2.
In Sec. III, we describe the heralded creation of a qutrit for
the case of n = 2 and m = 2, based on the factorization of a
corresponding polynomial. In Sec. IV, we present a general
extension of the polynomial factorization to the qudit cases of
n � 3 and m = 2. In Sec. V, we discuss that further extensions
of our scheme to m � 3 are, in general, impossible. In Sec. VI,
we present a few examples and applications of our qudit
generation scheme. In Sec. VII, we present an experimental
demonstration of our scheme by using time bins. The density
matrices of the heralded states are fully characterized by
quantum tomography, employing homodyne detectors for the
simultaneous measurements of quadrature values [9]. Further
examples are presented in the appendices.

II. HERALDED CREATION OF AN ARBITRARY QUBIT

In a heralded scheme, typically two-mode squeezing by
parametric down-conversion is employed with sufficiently
weak pumping, where signal and idler photons are probabilis-
tically created in pairs. Mathematically, the initial two-mode
squeezed state is expressed as

√
1 − q2

∑∞
n=0 qn |n〉s |n〉i ,

where weak pumping corresponds to q � 1. In the following,
we omit the normalization factor

√
1 − q2; however, when

the success probability of projecting a two-mode squeezed
state onto a desired state is considered, this normalization
factor must be taken into account. Then the detection of idler
photons means projection onto

∑∞
n=1 |n〉i 〈n|. However, in the

case of very weak pumping, higher photon-number detections
are unlikely, so we approximate the projection operator by
|1〉i 〈1|. Alternatively, the detector can be a photon-number-
resolving (PNR) detector with high efficiency, in which case
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FIG. 1. Scheme for creating a qubit c10 |10〉 + c01 |01〉.

the projection |1〉i 〈1| is obtained even with strong pumping
by discarding the cases of two or more detected idler photons.
In addition, since we are not interested in the idler state after
the measurement, in the following we express the projection
measurement simply by a bra vector, i 〈1| = i 〈0| âi , where âi

is the annihilation operator for the idler mode. The process of
creating a heralded single photon can then be described by

i 〈1|
∞∑

n=0

qn |n〉s |n〉i

= i 〈0| âi

∞∑
n=0

qn

n!
â†n

s â
†n
i |0〉s |0〉i

= qâ†
s |0〉s = q |1〉s . (2)

Here, we intentionally introduced the annihilation and creation
operators â and â†, with the prospect of later use. Their
commutation relation is [âj ,â

†
k] = δjk . The error rate due to

the approximation of
∑∞

n=1 |n〉i 〈n| by |1〉i 〈1| based on weak
pumping is of the order of q2. These higher-photon-number
components turn the signal state into a mixed state.

An arbitrary single-photon (dual-rail) qubit c10 |10〉 +
c01 |01〉 can be created by combining two idler fields from
two parametric down-converters at a beam splitter before the
photon detection [8,9]. This basically means adjusting the era-
sure of which-path information [17]. The scheme is illustrated
in Fig. 1. Note that the actual experimental demonstration was
for a time-bin qubit [8,9], in which case “two idler fields from
two parametric down-converters” actually means idler fields
generated at (sufficiently) different times by a single parametric
down-converter. The scheme starts with

∞∑
n1=0

qn1 |n1〉s1 |n1〉i1 ⊗
∞∑

n2=0

qn2 |n2〉s2 |n2〉i2 , (3)

and the projection by a photon detection at one output port
of the beam splitter is expressed by i1 〈1| i2 〈0| Ûi1,i2(t,r),
under the approximation of neglecting the possibility of higher
excitations irrelevant to the photon detection (i.e., neglecting
orders ∼ q2). Alternatively, in the case of strong pumping with
a PNR detector, the projection by i2 〈0| has to be confirmed
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by another photon detector. Here, Ûk,�(t,r) is a unitary oper-
ator representing a beam-splitter transformation on modes k

and � with a transmission coefficient t ∈ C and a reflection
coefficient r ∈ C, satisfying |t |2 + |r|2 = 1. It transforms the
annihilation operators as

Û
†
k,�(t,r)âkÛk,�(t,r) = t âk + râ�, (4a)

Û
†
k,�(t,r)â�Ûk,�(t,r) = −r∗âk + t∗â�, (4b)

where the superscript ∗ denotes complex conjugate. Then, the
projection bra vector is rewritten as

i1 〈1| i2 〈0| Ûi1,i2(t,r) = i1 〈0| i2 〈0| âi1Ûi1,i2(t,r)

= i1 〈0| i2 〈0| Û †
i1,i2(t,r)âi1Ûi1,i2(t,r)

= i1 〈0| i2 〈0| (t âi1 + râi2). (5)

Note that here we utilized that a two-mode vacuum state is not
changed by a beam splitter, Ûi1,i2(t,r) |0〉i1 |0〉i2 = |0〉i1 |0〉i2.
The resulting state after the projection is

i1 〈1| i2 〈0| Ûi1,i2(t,r)
∞∑

n1,n2=0

qn1qn2 |n1〉s1 |n1〉i1 |n2〉s2 |n2〉i2

= i1 〈0| i2 〈0| (t âi1 + râi2)

×
∞∑

n1,n2=0

qn1qn2
â
†n1
s1 â

†n1
i1

n1!

â
†n2
s2 â

†n2
i2

n2!
|0〉s1 |0〉i1 |0〉s2 |0〉i2

= q(t â†
s1 + râ

†
s2) |0〉s1 |0〉s2

= q(t |1〉s1 |0〉s2 + r |0〉s1 |1〉s2), (6)

up to the normalization factor. Since the coefficients t and r

can be arbitrarily determined under the constraint |t |2 + |r|2 =
1 via the beam-splitting ratio and a phase shift before the
interference, an arbitrary qubit c10 |1〉s1 |0〉s2 + c01 |0〉s1 |1〉s2
is probabilistically created with this scheme. Because a photon
detection is phase insensitive, a phase shift after the inter-
ference is meaningless and thus only a phase shift before
the interference at the beam splitter can change the argu-
ment of the complex numbers t or r . For a projection onto
i1 〈0| i2 〈1| Ûi1,i2(t,r) (corresponding to the detection of one
photon in the other beam-splitter output port), it is easy to
see that a similar calculation leads to the orthogonal dual-rail
qubit state in the signal output modes, q(−r∗ |1〉s1 |0〉s2 +
t∗ |0〉s1 |1〉s2). Note that for the special case of t = r = 1/

√
2,

the scheme resembles the entanglement distribution in the
quantum repeater protocol of Ref. [18] with the two signal
modes distributed among two repeater stations.

III. HERALDED CREATION OF AN ARBITRARY QUTRIT

Let us now consider the case of a qutrit with a total photon
number of n = 2 in m = 2 modes, i.e.,

c20 |20〉1,2 + c11 |11〉1,2 + c02 |02〉1,2

=
(

c20√
2
â
†2
1 + c11â

†
1â

†
2 + c02√

2
â
†2
2

)
|00〉1,2 . (7)
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FIG. 2. Scheme for creating a qutrit c20 |20〉 + c11 |11〉 + c02 |02〉.

The crucial observation is the following decomposition:

c20â
†2
1 +

√
2c11â

†
1â

†
2 + c02â

†2
2

= (d11â
†
1 + d12â

†
2)(d21â

†
1 + d22â

†
2), (8)

where c20,c11,c02 ∈ C, d11,d12,d21,d22 ∈ C. Since all the cre-
ation operators commute with each other, this decomposition
corresponds to the problem of factorizing polynomials with
complex coefficients,

c20z
2 +

√
2c11z + c02 = (d11z + d12)(d21z + d22). (9)

However, this factorization is always possible from the funda-
mental theorem of algebra. The answer of az2 + bz + c = 0
is z = (−b ± √

b2 − 4ac)/2a when a �= 0, where
√

|u|eiθ is
either

√|u|eiθ/2 or
√|u|eiπ+iθ/2.

For implementing the product of two first-order terms
d11â

†
1 + d12â

†
2 and d21â

†
1 + d22â

†
2, the simplest way is to split

each of the two idler modes into two by a beam splitter. The
scheme is depicted in Fig. 2. We introduce two ancilla modes
in a vacuum state |0〉a1 |0〉a2, which enter the unused ports of
the beam splitters. Then we combine the two split idler modes
at two beam splitters with different transmission and reflection
coefficients, (t1,r1) and (t2,r2). More specifically, here we take
the beam-splitter operation as

Ûi1,i2(t1,r1)Ûa1,a2(t2,r2)

× Ûi1,a1

(
1√
2
, − 1√

2

)
Ûi2,a2

(
1√
2
, − 1√

2

)
, (10)

followed by the projection i1,i2,a1,a2 〈1,0,1,0|.
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Eventually, the two-mode signal state after the projection becomes

i1,i2,a1,a2 〈1,0,1,0| Ûi1,i2(t1,r1)Ûa1,a2(t2,r2)Ûi1,a1

(
1√
2
, − 1√

2

)

× Ûi2,a2

(
1√
2
, − 1√

2

) ∞∑
n1,n2=0

qn1qn2 |n1,n1,n2,n2〉s1,i1,s2,i2 |0,0〉a1,a2

= i1,i2,a1,a2 〈0,0,0,0| (t1âi1 + r1âi2)(t2âa1 + r2âa2)Ûi1,a1

(
1√
2
, − 1√

2

)
Ûi2,a2

(
1√
2
, − 1√

2

)

×
∞∑

n1,n2=0

qn1qn2 |n1,n1,n2,n2〉s1,i1,s2,i2 |0,0〉a1,a2

= i1,i2,a1,a2 〈0,0,0,0|
[
t1

(
âi1 − âa1√

2

)
+ r1

(
âi2 − âa2√

2

)][
t2

(
âi1 + âa1√

2

)
+ r2

(
âi2 + âa2√

2

)]

×
∞∑

n1,n2=0

qn1qn2
â
†n1
s1 â

†n1
i1

n1!

â
†n2
s2 â

†n2
i2

n2!
|0,0,0,0,0,0〉s1,i1,s2,i2,a1,a2

= q2

2

(
t1t2â

†2
s1 + t1r2â

†
s1â

†
s2 + r1t2â

†
s2â

†
s1 + r1r2â

†2
s2

) |0,0〉s1,s2

= q2

2

(
t1â

†
s1 + r1â

†
s2

)(
t2â

†
s1 + r2â

†
s2

) |0,0〉s1,s2 . (11)

Note that 〈0| â2â†2 |0〉 = 2 is used in the above calculation.
Taking account of the omitted normalization factor

√
1 − q2

for each of the two-mode squeezed states, and of a bias factor
discussed below, the success probability of projecting the two-
mode squeezed states into a desired qutrit state is in the range
from q4(1 − q2)2/4 to q4(1 − q2)2/2, depending on the target
qutrit state. Note that in the case of a qubit in Eq. (6), the
success probability q2(1 − q2)2 is equal for all states.

A. Interpretation of the bias factor

The first excitation b̂
†
2 := t2â

†
1 + r2â

†
2 can be decomposed

into a part parallel to the second excitation b̂
†
1 := t1â

†
1 + r1â

†
2

and an orthogonal part b̂
†
1⊥ := −r1â

†
1 + t1â

†
2 as

b̂
†
2 = c‖b̂

†
1 + c⊥b̂

†
1⊥. (12)

However, the parallel part has a twice as large contribution as
the orthogonal part,

b̂
†
1b̂

†
2 |0,0〉b̂1,b̂1⊥ = b̂

†
1(c‖b̂

†
1 + c⊥b̂

†
1⊥) |0,0〉b̂1,b̂1⊥

=
√

2c‖ |2,0〉b̂1,b̂1⊥ + c⊥ |1,1〉b̂1,b̂1⊥ , (13)

where the two-mode representation is appropriately cho-
sen so that b̂

†
1 |0,0〉b̂1,b̂1⊥ = |1,0〉b̂1,b̂1⊥ and b̂

†
1⊥ |0,0〉b̂1,b̂1⊥ =

|0,1〉b̂1,b̂1⊥ .

This “bias” is explained as follows. When b̂
†
2 is or-

thogonal to b̂
†
1, the photon that heralds b̂

†
1 must, after the

beam-splitter network, go to the detector i1 〈1|, while the
photon that heralds b̂

†
2 must go to the detector a1 〈1|. On

the other hand, when b̂
†
2 is parallel to b̂

†
1, the photon that

heralds b̂
†
1 may go to either of i1 〈1| and a1 〈1|, while the

photon that heralds b̂
†
2 must go to the other detector. This

freedom of swapping photons increases the contribution of
parallel components. Although the initial two-mode squeezed
state

∑∞
n1,n2=0 qn1qn2 |n1,n1,n2,n2〉s1,i1,s2,i2 equally contains

all the two-photon signal state c2,0 |2,0〉s1,s2 + c1,1 |1,1〉s1,s2 +
c0,2 |0,2〉s1,s2 with the probability density O(q4), b̂

†2
1 is twice

as likely to be heralded than b̂
†
1b̂

†
1⊥.

This observation is naturally extended to the case of general
total photon numbers n, which is described in Sec. IV, in which
case b̂

†n−k

1 b̂
†k
1⊥ has a contribution proportional to (n − k)!k!.

IV. HERALDED CREATION OF AN ARBITRARY QUDIT

The fundamental theorem of algebra says that an arbitrary
nonconstant single-variable polynomial with complex coeffi-
cients has at least one complex root. From this, it can be derived
that the decomposition into first-order terms,

cnz
n + cn−1z

n−1 + · · · + c1z + c0

= cn(z + d1)(z + d2) · · · (z + dn), (14)

is always possible when cn �= 0.
Therefore, an arbitrary superposition state can be, in prin-

ciple, decomposed as a product of first-order creation terms on
a vacuum state,

n∑
k=0

c(n−k)k |n − k〉1 |k〉2

=
n∑

k=0

c(n−k)k√
(n − k)!k!

â
†n−k

1 â
†k
2 |0〉1 |0〉2

=
[

n∏
k=0

(dk,1â
†
1 + dk,2â

†
2)

]
|0〉1 |0〉2 . (15)
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FIG. 3. Scheme for creating a qudit
∑n

k=0 c(n−k)k |n − k〉 |k〉,
where the dimension is d = n + 1. The number of the conditioning
detectors corresponds to the total photon number n. The figure, as an
example, is for n = 3.

This is created via a heralded scheme depicted in Fig. 3,
which is a natural extension of the two-photon qutrit case in

Sec. III. We first equally split each of the two idler modes into
n modes by a series of beam splitters. Mathematically, for each
idler mode k = 1,2, we introduce n − 1 ancilla vacuum modes,
and we combine them at a series of beam splitters, which is,
for instance, described by

Ûk = Ûik,ak1

(
1√
2
, − 1√

2

)
Ûik,ak2

(√
2

3
, − 1√

3

)

. . . Ûik,ak(n−1)

(√
n − 1

n
, − 1√

n

)
. (16)

This network divides the idler modes with an equal weight,

[Û†
kâikÛk,â

†
ik] = [Û†

kâak�Ûk,â
†
ik] = 1√

n
, (17)

for � = 1, . . . ,n − 1. Then we combine the two
sets of the split idler modes at n beam splitters
Ûi1,i2(t1,r1), Ûa11,a21(t2,r2), . . . ,Ûa1(n−1),a2(n−1)(tn,rn), each
followed by a photon detection. The whole procedure can be
expressed as

i1,i2,a11,a21,...,a1(n−1),a2(n−1) 〈1,0,1,0, . . . ,1,0| Ûi1,i2(t1,r1)Ûa11,a21(t2,r2) . . . Ûa1(n−1),a2(n−1)(tn,rn)Û1Û2

×
∞∑

n1,n2=0

qn1qn2 |n1,n1,n2,n2〉s1,i1,s2,i2 |0,0, . . . ,0,0〉a11,a21,...,a1(n−1),a2(n−1)

= i1,i2,a11,a21,...,a1(n−1),a2(n−1) 〈0,0,0,0, . . . ,0,0| (t1Û
†
1âi1Û1 + r1Û

†
2âi2Û2)(t2Û

†
1âa11Û1 + r2Û

†
2âa21Û2) · · ·

× (tnÛ
†
1âa1(n−1)Û1 + rnÛ

†
2âa2(n−1)Û2)

∞∑
n1,n2=0

qn1qn2
â
†n1
s1 â

†n1
i1

n1!

â
†n2
s2 â

†n2
i2

n2!
|0,0,0,0,0,0, . . . ,0,0〉s1,i1,s2,i2,a11,a21,...,a1(n−1),a2(n−1)

= qn

nn/2
(t1â

†
s1 + r1â

†
s2) . . . (tnâ

†
s1 + rnâ

†
s2) |0,0〉s1,s2 . (18)

Note that 〈0| ânâ†n |0〉 = n! is used in the above calculation.

Like above, the heralded creation of a qudit with n photons
is, in principle, possible based on the decomposition into
first-order terms. However, finding the set of decomposition
coefficients {dk�} for a specific case {ck�} is not an easy
problem in general, as well as the factorization of the nth-order
polynomial.

V. POSSIBILITY OF FURTHER MULTIMODE
EXTENSIONS

So far, we have discussed that an arbitrary superposition
state with an arbitrary total photon number n can be, in
principle, created with heralded schemes when the number of
modes is m = 2. Similarly, we may consider an extension to a
general number of modes m as∑

n1+···+nm=n

cn1,...,nm
|n1, . . . ,nm〉1,...,m . (19)

In this general case, we have to consider the factorization of a
polynomial with m − 1 variables,

∑
n1+···+nm=n

cn1,...,nm√
n1! . . . nm!

z
n1
1 . . . z

nm−1
m−1. (20)

In the case where a factorization into first-order terms
(
∑m−1

k=1 dkzk) + dm is possible, the corresponding state can
again be created in a similar manner by utilizing beam-splitter
networks before heralding photon detections.

However, it may not be possible to factorize polynomials
when they contain more than two variables. Therefore, the
cases with more than three modes m � 3 are an open question,
except for the trivial case of a total photon number n � 1. In
fact, the insufficient degrees of freedom imply the requirement
of a totally different scheme instead of the factorization into
first-order terms. For instance, for the simplest case of n =
2 and m = 3, the polynomial to be factorized (absorbing the
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factors of 1/
√

n1!n2!n3! into the coefficients cn1,n2,n3 ) is

c2,0,0z
2
1 + c1,1,0z1z2 + c0,2,0z

2
2 + c1,0,1z1 + c0,1,1z2 + c0,0,2,

(21)

while that after the factorization is

c0,0,2(1 + d1,1z1 + d1,2z2)(1 + d2,1z1 + d2,2z2). (22)

Obviously, the degree of freedom after the factorization is not
sufficient to cover all the second-order polynomials.

Similarly, we can consider the extension to an arbitrary
superposition state containing no more than n photons in total,
distributed in m modes,∑

n1+···+nm�n

cn1,...,nm
|n1, . . . ,nm〉1,...,m . (23)

In this case, the desired decomposition is

∑
n1+···+nm�n

cn1,...,nm√
n1 . . . nmk!

â
†n1
1 . . . â†nm

m

=
n∏

k=0

(dk,1â
†
1 + · · · + dk,mâ†

m + dk,m+1). (24)

If the above decomposition is possible, each of the single
excitations dk,1â

†
1 + · · · + dk,mâ

†
m + dk,m+1 is, in principle,

possible since the addition of a zeroth-order term dk,m+1 to
first-order terms dk,1â

†
1 + · · · + dk,mâ

†
m is possible by a small

coherent displacement of the corresponding idler mode in
phase space, âi → âi + εi , before the photon detection [4–6].
The corresponding polynomial to be factorized becomes

∑
n1+·+nm�n

cn1,...,nm√
n1! . . . nm!

z
n1
1 . . . zn1

m . (25)

The polynomial of Eq. (20) is equivalent to that of Eq. (25)
when m is replaced by m + 1, and thus the problem of “up to
n photons in m modes” is equivalent to that of “total n photons
in m + 1 modes.”

VI. EXAMPLES AND APPLICATIONS

A. Error-correction code for loss

An important possible application of our general super-
position states is the creation of quantum error-correction
codewords and their logical states. Taking advantage of our
scheme to prepare multiphoton states, here we consider an
error-correction code against amplitude damping. A famous
example is a logical qubit defined as

|0〉L = 1√
2

(|40〉 + |04〉), (26a)

|1〉L = |22〉 . (26b)

Then, |	〉 = α |0〉L + β |1〉L is a good encoding of a qubit
against a random one-photon loss [14]. Assuming α,β �= 0,
the logical qubit state can be expressed in terms of creation

operators,
α√
2

(|40〉 + |04〉) + β |22〉

=
[

α√
2

(
a
†4
1√
4!

+ a
†4
2√
4!

)
+ β

2
a
†2
1 a

†2
2

]
|00〉

=
(

α

4
√

3
a
†4
1 + α

4
√

3
a
†4
2 + β

2
a
†2
1 a

†2
2

)
|00〉

=: p(a†
1,a

†
2) |00〉. (27)

To find the transmittance and the reflection coefficients in
Eq. (11), one has to determine the decomposition of p(a†

1,a
†
2)

into linear factors. A short calculation shows

p(a†
1,a

†
2) |00〉 = α

4
√

3

⎛
⎝a

†
1 − a

†
2

√
−

√
3β

α
+

√
3β2

α2
− 1

⎞
⎠

×
⎛
⎝a

†
1 − a

†
2

√
−

√
3β

α
−

√
3β2

α2
− 1

⎞
⎠

×
⎛
⎝a

†
1 + a

†
2

√
−

√
3β

α
+

√
3β2

α2
− 1

⎞
⎠

×
⎛
⎝a

†
1 + a

†
2

√
−

√
3β

α
−

√
3β2

α2
− 1

⎞
⎠ |00〉.

(28)

The expression is not yet in the form of the last line of
Eq. (11). This is done by rescaling each linear factor to obtain
the transmission and reflection coefficients,

t1 = t3 = 1√
1 + ∣∣ −

√
3β

α
+

√
3β2

α2 − 1
∣∣2

,

(29a)

r1 = r3 =
−

√
3β

α
+

√
3β2

α2 − 1√
1 + ∣∣ −

√
3β

α
+

√
3β2

α2 − 1
∣∣2

,

t2 = t4 = 1√
1 + ∣∣√

3β

α
+

√
3β2

α2 − 1
∣∣2

,

(29b)

r2 = r4 =
−

√
3β

α
−

√
3β2

α2 − 1√
1 + ∣∣√

3β

α
+

√
3β2

α2 − 1
∣∣2

.

The success probability for obtaining the desired heralded
state is found to be

Psucc(α,β) = 48

α2

q8

256
(1−q2)2

⎛
⎝1+

∣∣∣∣∣−
√

3β

α
+

√
3β2

α2
−1

∣∣∣∣∣
2
⎞
⎠

−1

×
⎛
⎝1 +

∣∣∣∣∣
√

3β

α
+

√
3β2

α2
− 1

∣∣∣∣∣
2
⎞
⎠

−1

. (30)
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FIG. 4. Success probability for creating 1√
2
(|N0〉 + |0N〉) for various N in dependence of q (PNRD). Note that the N = 2 NOON state

can also be directly obtained from two single-photon states using a beam splitter. (a) N = 2. (b) (i) N = 3, (ii) N = 4, (iii) N = 5.

Note that the code spanned by the two codewords as given
in Eq. (26) can correct losses of up to one photon. In fact, it can
easily be seen that the two codewords remain orthogonal after
the loss of one photon in either the first or the second mode.
Moreover, these two distinct cases lead to logical qubits that
live in orthogonal error spaces, {|30〉 , |12〉}versus {|03〉 , |21〉},
respectively. Slightly less simple but also straightforwardly
confirmable is that the logical qubit information does not
get deformed by the loss of one photon, and so it remains
intact in any one of the permitted subspaces. However, once
two or more photons get lost, the supposedly different error
spaces start overlapping. Thus, the code only works well in
the regime of sufficiently small losses. More generally, such
a two-mode n-photon loss code can correct up to

√
n − 1

losses and, using our scheme, in principle, any such two-mode
code can be experimentally prepared. There are also other
loss codes that are based upon a higher number of modes,
where we have seen that our generation scheme may no longer
be applicable. Nonetheless, a class of such multimode loss
codes makes use of an initial supply of so-called NOON states
[19]. For this application, but also for other applications in the
context of quantum metrology or lithography, the ability to
experimentally prepare NOON states is of great interest. We
consider this example next.

B. NOON states

A general NOON state is given by

1√
2

(|N0〉 + |0N〉) = 1√
2

(
a
†N
1√
N !

+ a
†N
2√
N !

)
|00〉. (31)

To be able to apply our scheme for their creation, the polyno-
mial

p(x,y) = 1√
2N !

(xN + yN ) (32)

has to be decomposed into linear factors. The decomposition
is given by

p(x,y) := 1√
2N !

N−1∏
k=0

(
x − ζ2Nζ k

Ny
)
, (33)

where ζN = exp( 2πi
N

) is the N th root of unity.

Therefore, one can write

p(a†
1,a

†
2) |00〉 = 1√

2N !

N−1∏
k=0

(a†
1 − ζ2Nζ k

Na
†
2) |00〉

= 1√
2N !

√
2

N
N−1∏
k=0

(tka
†
1 + rka

†
2) |00〉 , (34)

where the corresponding transmission and reflection coeffi-
cients are

tk = 1√
2

and rk = −ζ2Nζ k
N√

2
. (35)

The corresponding success probability is

psucc = q2N (1 − q2)2 2N !

2N

1

NN
. (36)

In Fig. 4, the success probability is shown for various values
of N . Further examples are presented in the appendices.

VII. EXPERIMENT

Based on the above theory, we also present an experiment
on the generation of two-mode qutrit states (n = 2, m = 2).
The experimental setup is shown in Fig. 5. This is a natural
extension of a previous time-bin qubit experiment (n = 1, m =
2) [9]. Instead of preparing two independent nondegenerate
optical parametric oscillators (NOPOs), we use a single NOPO,
combined with two Mach-Zehnder interferometers on the idler
side, with asymmetric arm lengths.

The NOPO, containing a periodically poled KTiOPO4 crys-
tal with a type-0 phase matching, is pumped continuously in a
weak-pump regime, generating two-mode squeezed vacuum
beams (signal and idler beams) continuously, which have
finite correlation times determined by the bandwidth of the
NOPO cavity (about 12 MHz of full width at half maximum).
The signal and idler fields are two frequency modes of the
NOPO cavity, separated by a free spectrum range (FSR) of
about 600 MHz. An acousto-optic modulator (AOM) shifts the
frequency of the pump beam by this FSR frequency, by which
the signal field is at the frequency of local oscillators (LOs)
for homodyne detections, while the idler field is at a different
frequency separated by the FSR. As optical phase references,
weak coherent beams are injected into the NOPO for both the
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Ti:Sa
CW 860nm

AOM

AOM

SHG

NOPO

MCC

FC-1 FC-2 FC-3

Fiber 50 m

APD-1

APD-2

HD-1

HD-2
PBS

PBS

PBS

PBS

HWP

HWP
LO

LO

Signal
Idler

PBS

HWP

AOMAOM
AOM

AOM

FIG. 5. Experimental setup. Ti:Sa denotes Ti:sapphire laser; CW:
continuous wave; SHG: second harmonic generator; FC: filter cavity;
MCC: spatial-mode cleaning cavity; and HD: homodyne detector.

signal and idler frequencies, which are switched on and off by
AOMs. Feedback control of the optical system is performed
by using the coherent beams, while qutrit states are generated
when the coherent beams are absent.

The signal and idler fields are spatially separated by a filter
cavity (FC-1 in Fig. 5) whose round-trip length is half of that
of the NOPO. Additional two filter cavities (FC-2 and FC-
3 in Fig. 5) further eliminate irrelevant fields before photon

detections. After the filtering of the idler field, there are two
Mach-Zehnder interferometers. The optical delay lines in the
two Mach-Zehnder interferometers are common, implemented
with a polarization-maintaining optical fiber with a length of
about 50 m. Thanks to the delay line, sufficiently time-shifted
idler fields interfere before the photon detection, which enables
the heralded generation of time-bin superposition states. In
order to control the transmission and reflection coefficients
that determine the heralded state (see Appendix A), variable
beam splitters are constructed with half-wave plates (HWPs)
and polarization beam splitters (PBSs). The absolute values of
the transmission and reflection coefficients are controlled by
the angles of the wave plates, while the phases are feedback
controlled using piezoactuated mirrors. The angles of the wave
plates are adjusted by referring to the photon-counting rate
from each arm.

When two silicone avalanche photodiodes (APDs) detect
a photon simultaneously on the idler side, a qutrit state is
heralded on the signal side. The idler field before each APD
is coupled to a single-mode optical fiber for mode selection,
and therefore there is no degradation of heralded states caused
by imperfect interference visibilities of the Mach-Zehnder
interferometers. AOMs before the APDs are switched on and
off for protection of the APDs so that coherent phase-reference
beams do not enter the APDs. We set a time window of about
30 ns to judge two photon detection events to be simultaneous.
Simultaneous detection events were about 50 times per second.
Note that the event rate is theoretically state dependent for the
reasons discussed in Sec. III A, and we surely observed such
dependence in the experiment (e.g., the event rate of generating
|2,0〉 is twice as large as that of generating |1,1〉 with the same
pumping power).

FIG. 6. Experimental density matrix for (|2,0〉 + |1,1〉 + |0,2〉)/√3. For the qutrit matrix elements, positive elements are colored in orange
(light gray) and negative elements are colored in blue (gray). (a) Density matrix (real part), (b) Density matrix (imaginary part), (c) Qutrit
subspace (real part), (d) Qutrit subspace (imaginary part), and (e) Probability of total photon number.
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0.8

0.6

0.4

0.2

0.0
0 1 2 3 4 5

FIG. 7. Experimental density matrix for [
√

2 |2,0〉 + (1 + √
2i) |1,1〉 + 2i |0,2〉]/3. For the qutrit matrix elements, positive elements are

colored in orange (light gray) and negative elements are colored in blue (gray). (a) Density matrix (real part), (b) Density matrix (imaginary
part), (c) Qutrit subspace (real part), (d) Qutrit subspace (imaginary part), and (e) Probability of total photon number.

The signal field, reflected by the first filter cavity, is sent
to the characterization setup. The heralded state is, instead
of photon-detection-based characterization [20], fully charac-
terized with quantum tomography employing two homodyne
detectors for simultaneous measurements of conjugate quadra-
ture variables [9]. For each quantum state, quadrature values
of 20 000 events were utilized for estimation.

Here we show the results of two qutrit states as examples.
One state is (|2,0〉 + |1,1〉 + |0,2〉)/√3 and the other one is
[
√

2 |2,0〉 + (1 + √
2i) |1,1〉 + 2i |0,2〉]/3. The resulting den-

sity matrices are shown in Figs. 6 and 7, respectively. Real and
imaginary parts of the density matrices are shown for both
the full space up to three photons and the qutrit subspace.
The distributions of the total photon number are calculated
from the diagonal elements of Figs. 6(a) and 7(a), and shown
in Figs. 6(e) and 7(e). The two-photon components, i.e., the
probability of the state existing in the qutrit subspace, were
49% and 47%, respectively (constantly 45–50%), which are
consistent with the heralded single-photon purity of about
70% (i.e., about 30% of losses). One-photon components
as well as vacuum components are also consistent with the
losses. These unwanted components will be suppressed by
reducing optical losses in the signal line (known optical losses
are 3% inside the NOPO and 3% in the transmission line
after the NOPO), homodyne detection inefficiencies (mainly
caused by mode mismatch with the LOs corresponding to
interference visibilities of about 97%), and fake clicks from
the APDs (estimated as about 1% from each APD). On the
other hand, three-photon components which are less than 10%
can be further suppressed by attenuating the pump power. The
matrices for the qutrit subspace [Figs. 6(c), 6(d), 7(c), and 7(d)]

are renormalized by the two-photon probability. The fidelities
regarding the qutrit subspace were 93% and 95%, respectively
(constantly over 90%). The fidelities will be improved if the
precision and stability of our experimental setup are enhanced,
such as the polarization in the fiber delay line.

VIII. CONCLUSION

We proposed a scheme to generate arbitrary qudit states in
a heralded fashion, distributing n photons (d = n + 1) in two
modes as a superposition state, based on two-mode squeezed
states and photon detections. We further discussed an extension
of our scheme to m � 3 modes, which may sometimes be
possible, but not in general. Furthermore, we experimentally
demonstrated our scheme by generating some exemplary qutrit
states. States that can be created with our scheme include
important states for quantum information applications, such
as NOON states with N � 3 and encoded quantum error-
correction states to suppress photon loss.
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APPENDIX A: TWO-PHOTON STATES

Let us consider the balanced superposition 1√
3
(|20〉 +

|02〉 + |11〉), which cannot be obtained by linear optics alone.
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FIG. 8. Success probability for creating 1√
3
(|20〉 + |02〉 + |11〉)

in dependence of q (using photon-number-resolving detectors).

We can write
1√
3

(|20〉 + |02〉 + |11〉)

= 1√
3

(
a
†2
1√
2

+ a
†2
1√
2

+ a
†
1a

†
2

)
|00〉

=
√

1

6

[
a
†
1 + 1√

2
(1 − i)a†

2

][
a
†
1 + 1√

2
(1 + i)a†

2

]
|00〉

=
√

2

3

[
a
†
1√
2

+ 1

2
(1 − i)a†

2

][
a
†
1√
2

+ 1

2
(1 + i)a†

2

]
|00〉 .

(A1)

The probability for successful generation is thus Psucc =
3
8q4(1 − q2)2, which is plotted in Fig. 8.

A general superposition of two-photon states can be decom-
posed as follows:

α |20〉 + β |02〉 + γ |11〉

=
(

α√
2
a
†2
1 + β√

2
a
†2
2 + γ a

†
1a

†
2

)
|00〉

= α√
2

[
a
†
1 − a

†
2

(
− γ√

2α
+

√
γ 2

2α2
− β

α

)]

×
[
a
†
1 − a

†
2

(
− γ√

2α
−

√
γ 2

2α2
− β

α

)]
|00〉 . (A2)

The corresponding transmission and reflection coefficients are

t1 = 1√
1 + ∣∣ − γ√

2α
+

√
γ 2

2α2 − β

α

∣∣2

, (A3a)

r1 =
− γ√

2α
+

√
γ 2

2α2 − β

α√
1 + ∣∣ − γ√

2α
+

√
γ 2

2α2 − β

α

∣∣2

(A3b)

t2 = 1√
1 + ∣∣ γ√

2α
+

√
γ 2

2α2 − β

α

∣∣2

, (A3c)

r2 = −
γ√
2α

+
√

γ 2

2α2 − β

α√
1 + ∣∣ γ√

2α
+

√
γ 2

2α2 − β

α

∣∣2

. (A3d)

APPENDIX B: THREE-MODE STATES

Using the methods described above, as an example of a
three-mode state that can indeed be created, we present the
following state:

1

2
√

3
(a†

1 + a
†
2)(a†

1 + a
†
3)(a†

2 − a
†
3) |000〉

= 1

2
√

3
(a†2

1 a
†
2−a

†2
1 a

†
3−a

†2
1 a

†
3+a

†2
2 a

†
1+a

†2
2 a

†
3−a

†2
3 a

†
2) |000〉

= 1√
3

(
|2〉 |10〉− |01〉√

2
+ |1〉 |20〉− |02〉√

2
+ |0〉 |21〉 − |12〉√

2

)
.
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