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Quantum nondemolition gate operations and measurements in real time on fluctuating signals
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We demonstrate an optical quantum nondemolition (QND) interaction gate with a bandwidth of about
100 MHz. Employing this gate, we are able to perform QND measurements in real time on randomly fluctuating
signals. Our QND gate relies on linear optics and offline-prepared squeezed states. In contrast to previous
demonstrations on narrow sideband modes, our gate is compatible with quantum states temporally localized
in a wave-packet mode including non-Gaussian quantum states. This is the cornerstone of realizing quantum
error correction and universal gate operations.
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I. INTRODUCTION

Quantum information processing with light is a promising
approach for universal and scalable quantum computation. In
recent years, there has been significant progress in optical con-
tinuous variable (CV) quantum computation by using a time-
domain multiplexing scheme [1–4], where quantum states are
encoded in a string of wave-packet modes in a single optical
beam. This scheme enables us to prepare an unlimited number
of quantized modes in a single beam, individually access each
of these modes, and continuously manipulate these modes
with a small number of optical components. Therefore, this
is one of the most efficient and practical schemes in terms of
scalability and, in practice, the largest-scale entangled quan-
tum state to date was generated by the time-domain multi-
plexing scheme [4]. Although such entanglement, in principle,
enables universal and large-scale quantum computation, error
correction to achieve fault tolerance and non-Gaussian gate
operations [5] still remain big challenges for CV quantum
computation with time-domain multiplexing schemes.

To realize error correction and non-Gaussian operations,
a quantum nondemolition (QND) interaction [6–8], which
couples two quantum systems, is an essential component. A
QND gate is indispensable to error syndrome measurements
[9–11], including the special case of CV error correction
schemes [5,12–14], and also required for non-Gaussian op-
erations via gate teleportation [5,15]. In one of the previous
demonstrations, a QND gate using linear optics and off-
line prepared squeezed states was demonstrated with high
precession [16,17]. This off-line scheme can, in principle, be
applied to an arbitrary optical quantum state. However, QND
gates in the previous demonstrations [17–19] only work on
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quantum states in narrow sideband modes in the frequency
domain. This means that these gates are not applicable to
general quantum states generated in wave-packet modes and
not compatible with the time-domain multiplexing schemes.
Therefore, a broadband QND gate which can work on wave-
packet modes needs to be implemented for fault-tolerant and
universal quantum computation with the time-domain multi-
plexing schemes.

In this paper, we demonstrate QND gate operations and
measurements on continuously fluctuating signals in real time
with a bandwidth of about 100 MHz. Unlike previous experi-
ments [17–19], the input signal is randomly fluctuating with a
short autocorrelation time, and thus the success of QND inter-
actions on this signal is a proof that our gate correctly operates
instant signals without memory-like effects. The time-domain
traces of quadrature values are obtained in real time by just
applying electric filters [20], and thus can be interpreted as
results of real-time QND measurements with respect to time-
shifted wave-packet modes determined by the electric filters.
Since our QND gate works on any wave-packet mode for
up to about 100 MHz, our gate is compatible with general
quantum states including non-Gaussian quantum states such
as single-photon states [21,22] and Schrödinger’s cat states
[23,24], which are included in many CV protocols [5,25,26].
Note that, for CV single-mode squeezing and teleportation
gates, operations on such non-Gaussian quantum states have
already been demonstrated with a bandwidth of about 10 MHz
[27–32]. Here we demonstrate a broadband interaction gate,
and furthermore the bandwidth is widened to about 100 MHz.
Our gate is a crucial component for future realizations of
error correction schemes [5,12–14] based on the time-domain
multiplexing and non-Gaussian gate operations which are
necessary for universal quantum computation [5,15,25,26]. In
addition, our gate is also applicable to generate time-domain
multiplexed cluster states for one-way quantum computation
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FIG. 1. Experimental setup. (a) Decomposition of a QND gate.
(b) Peripheral systems for the input signal preparation and the output
measurements. Input optical signal is sent to either Input 1 or Input
2. (c) Experimental setup of the QND gate. Squeezing gates A and B
share an optical delay line in orthogonal polarizations. “SHG” labels
a second-harmonic generator; “HD” labels a homodyne detector.

[1,33], to employ CV gate sequences in a loop-based architec-
ture [34] and for CV coherent communication [35].

II. THEORY

Let us define quadratures of a quantum optical field mode k

as x̂k and p̂k with x̂k ≡ (â†
k + âk ) and p̂k ≡ i(â†

k − âk ), where
âk and â

†
k are annihilation and creation operators, respectively

(h̄ = 2, [x̂k, p̂k′] = 2iδkk′). The QND interaction is a two-
mode unitary operation ÛQND = exp(− i

2Gx̂1p̂2), where G

is a QND gain, i.e., the strength of the interaction of two
optical modes. This interaction transforms the quadrature
operators as[

x̂out
1

x̂out
2

]
=

[
1 0
G 1

][
x̂ in

1

x̂ in
2

]
,

[
p̂out

1

p̂out
2

]
=

[
1 −G

0 1

][
p̂in

1

p̂in
2

]
.

(1)

Since the QND interaction belongs to the class of Gaussian
operations, it is decomposable into beam-splitter interactions
and single-mode squeezing operations [see Fig. 1(a)] [16,36].
Furthermore, squeezing is also a Gaussian operation and

is realized by an off-line scheme with a beam splitter and
ancillary squeezed light [16], where the squeezing degree is
tunable via the reflectivity of the beam splitter R. The QND
gate is implemented by choosing the beam-splitter reflectiv-
ities before and after the squeezing gates as 1/(1 + R) and
R/(1 + R), respectively [see Fig. 1(a)]. We obtain

x̂out
1 = x̂ in

1 −
√

1 − R

1 + R
x̂

(0)
A e−rA , (2a)

x̂out
2 = 1 − R√

R
x̂ in

1 + x̂ in
2 +

√
R

1 − R

1 + R
x̂

(0)
A e−rA , (2b)

p̂out
1 = p̂in

1 − 1 − R√
R

p̂in
2 +

√
R

1 − R

1 + R
p̂

(0)
B e−rB , (2c)

p̂out
2 = p̂in

2 +
√

1 − R

1 + R
p̂

(0)
B e−rB , (2d)

where x̂
(0)
A e−rA and p̂

(0)
B e−rB are quadratures of ancillary

squeezed vacua of squeezing gates A and B with finite squeez-
ing parameters rA and rB. In the ideal limit of rA, rB → ∞,
both x̂

(0)
A e−rA and p̂

(0)
B e−rB terms vanish, and Eq. (2) becomes

equivalent to Eq. (1), where the QND gain is G = (1 −
R)/

√
R. In the experiment, we choose the QND gain G = 1.

In this case, R = (3 − √
5)/2 ≈ 0.38, 1/(1 + R) ≈ 0.72, and

R/(1 + R) ≈ 0.28.
For characterization of the gate, we obtain the quadratures

x̂k or p̂k (k = 1, 2) by homodyne detection by using a local
oscillator (LO). Generally, in the case that the LO is a con-
tinuous coherent light, the detected homodyne signal is also
continuous. The quadrature of a quantum state in a wave-
packet mode gmode(t ) is obtained from the original homodyne
signal X̂k (t ) by an integration x̂k = ∫

gmode(τ )X̂k (τ )dτ . On
the other hand, when a continuous signal X̂k (t ) passes through
a filter with a response function gfilter (t ), the resulting contin-
uous signal becomes x̂k (t ) = ∫

gfilter (t − τ )X̂k (τ )dτ . There-
fore we obtain quadrature values in real time just by inserting
an electric filter, where the mode function that corresponds to
the quadrature value x̂k (t0) obtained at time t0 is gmode,t0 (t ) =
gfilter (t0 − t ) [20]. Note that real-time measurements are nec-
essary for nonlinear feed-forward operations in measurement-
based quantum computation [20]. We choose a low-pass filter
(LPF) which has a flat passband and a steep edge with a cutoff
frequency of 100 MHz to treat the bandwidth of 100 MHz
equally. However, the QND gate itself can work on arbitrary
wave-packet modes for up to the bandwidth of 100 MHz,
enabling operations on non-Gaussian states.

As already noted, to show memoryless features of our gate,
we use random white signals as inputs. From the signal-to-
noise ratio of this random signal, we can evaluate the con-
ventional QND quantities TS and TP [37]. However, unlike
previous experiments [7,8,17–19], it may not be appropriate
to evaluate TS and TP just by transfer of signal powers. If the
signal is modified unexpectedly by irregular gate responses,
a part of the input signal is considered to be converted to
noise at the output, by which the effective TS and TP degrades.
To exclude such a possibility, we check the cancellation of
the output signals by using the input signal. The setup is
shown in Fig. 1(b). The random signal is split into two; one is
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utilized for generating the input optical signal, and the other
is stored for reference. Here we set the target of the QND
measurement to the quadrature amplitude produced by the
random signal in the wave-packet mode defined by the electric
filters. This input amplitude is directly stored by applying
the same electric filters to the random signal before storage.
Therefore, we can cancel the produced output signals [(ii) and
(iii) in Fig. 1(b)] by using the stored signal [(i) in Fig. 1(b)]
with an appropriate shift of the time origin. This is also an
achievement of this research.

III. EXPERIMENTAL SETUP

We use a continuous-wave (cw) Ti:sapphire laser at a
wavelength of 860 nm. Input states of the QND gate are
vacuum states and coherent states. We generate a random
optical signal by using a waveguide electro-optics modulator
(EOM) and amplified Johnson electric noise, which is applied
to each of the input quadratures (x in

1 , x in
2 , pin

1 , pin
2 ). For the

frequency characteristic of the random signal and the scheme
of generating the coherent state, see Appendix A. The other
three input quadratures are at vacuum levels. This is sufficient
to characterize the gate-response matrix on the assumption of
the linearity of the gate.

The QND gate consists of a Mach–Zehnder interferometer
containing two squeezing gates in it as shown in Fig. 1(a).
The squeezing gate has an optical delay line to compensate
the delay of electronic circuits for feed-forward operations.
To match the delays of two squeezing gates, we implement a
common delay line (about 3 m) by utilizing the optical polar-
ization degrees of freedom as shown in Fig. 1(c). We insert
a half-wave plate (HWP) before a polarizing beam splitter
(PBS) to separate the two outputs, by which the latter beam
splitter R/(1 + R) is implemented. The ancillary squeezed
vacua are generated from triangle-shaped optical parametric
oscillators (OPOs) [38]. For the broadband spectra of ancillary
squeezed vacua and homodyne detectors, see Appendix A.

We apply, in addition to the 100 MHz LPF mentioned
above, a high-pass filter (HPF) with a cutoff frequency of
1 MHz to the output homodyne signals for rejection of low-
frequency noise. The mode function is mainly determined by
the LPF, and the deformation of it by the HPF is negligible.
We acquire the filtered homodyne signals, together with the
filtered input signal, by an oscilloscope at the sampling rate
of 1 GHz. For the QND quantities TS, TP, and VS|P [37], we
use 1000 sets of sequential 10 000 data points. For the power
spectra, we use 9000 sets of sequential 1024 data points.

IV. EXPERIMENTAL RESULTS

First, as an example, we show the time-domain traces for
the case where the white signal is applied to x̂ in

1 . The other
three cases are shown in Appendix B. In Fig. 2, we show typi-
cal time-domain traces of the filtered white signals and the fil-
tered homodyne signals for 300 ns. Figures 2(a) and 2(b) show
the traces of the input white signal and the output quadratures
x̂out

1 and x̂out
2 [(i), (ii), and (iii) in Fig. 1(b)], respectively. We

can see that the output quadratures x̂out
1 and x̂out

2 follow the in-
put white signal with a time delay of 36 ns, which is shown by
gray backgrounds and dotted lines in Figs. 2(a) and 2(b). This
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FIG. 2. Time-domain traces for 300 ns. (a) The filtered input
white signals. (b) The filtered output homodyne signals: red (gray)
is x̂out

1 ; cyan (light gray) is x̂out
2 . (c) Results of the cancellation:

red (gray) is x̂out
1 ; cyan (light gray) is x̂out

2 . (d) The filtered output
homodyne signals for vacuum inputs: red (gray) is x̂out

1 ; cyan (light
gray) is x̂out

2 . (e) The filtered output homodyne signals for vacuum
inputs: red (gray) is p̂out

1 ; cyan (light gray) is p̂out
2 .

means that the signal input x̂ in
1 is transmitted nondestructively

to the signal output x̂out
1 , and simultaneously the signal infor-

mation is copied to the probe output x̂out
2 . Then we subtract

the input white signal from the output respective quadratures
x̂out

1 and x̂out
2 with an optimum gain and the time shift; the

results are shown in Fig. 2(c). As references, in Fig. 2(d), we
also show traces of x̂out

1 and x̂out
2 for the case of vacuum input.

We can see that the variances of the residual fluctuations in
Fig. 2(c) are comparable to those of the vacuum input case in
Fig. 2(d). The nice cancellation with a simple time shift means
that the gate converts the instant input signals to the instant
output signals without memory-like effects in this timescale.
Without the added random signals, there is still some positive
correlation independent of the input signal in x̂out

1 and x̂out
2 .

On the other hand, when we look at p̂out
1 and p̂out

2 in Fig. 2(e),
there is a negative correlation. Figures 2(d) and 2(e) show the
quantum entanglement generated by the gate interaction.

Next, to evaluate the cancellation more precisely, we apply
a Fourier transform to the results; the resulting power spectra
are shown in Fig. 3. The spectra for the vacuum-state input,
the coherent-state input, the cancellation, and the homodyne
shot noise as a reference are colored in red, magenta, green,
and black, respectively. In the case of an ideal QND inter-
action of vacuum inputs with G = 1, x̂out

1 and p̂out
2 are kept
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at the shot-noise level, while x̂out
2 and p̂out

1 are increased by
3 dB from the shot-noise level, because a vacuum fluctuation
of x̂ in

1 or p̂in
2 is added. Our results are in good agreement

with this, although there is some excess noise increase due
to finite squeezing of ancillary states. When the input white
signal is added to x̂ in

1 , the powers of x̂out
1 and x̂out

2 increase by
the same amount, showing the unity gain of the QND inter-
action, while those of p̂out

1 and p̂out
2 do not increase, showing

negligible crosstalk between x and p quadratures. Comparing
the vacuum-input (red) trace and the signal-canceled (dashed
green) trace, we can see that the cancellation is almost per-
fectly working for up to about 100 MHz. Further discussions
of the cancellations by introducing response functions are
included in Appendix B.

Finally, we evaluate the QND quantities TS, TP, and VS|P
for both x̂ and p̂ quadratures (see Appendix C). The suc-
cess of QND measurements is commonly verified by the
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FIG. 4. Spectra of the QND quantities. (a), (b) Transfer coeffi-
cients when the random signal is added to x̂ in

1 or p̂in
2 , respectively. Red

(top), blue (middle), and green (bottom) traces are TS + TP, TS, and
TP respectively. (c), (d) Conditional variances for vacuum inputs, i.e.,
the variances of x̂out

1 − gxx̂
out
2 and gpp̂out

1 + p̂out
2 at the gain gx = 0.41

and gp = 0.39, respectively (see Appendix D), normalized by the
shot noise spectrum. Blue (bottom) and green (top) traces are for the
cases with and without the ancillary squeezed vacua, respectively.

criteria [37]

1 < TS + TP, VS|P < 1. (3)

The experimentally determined values are TS + TP = 1.37 ±
0.03 > 1 and VS|P = 0.88 ± 0.01 < 1 for the x̂ quadratures,
and TS + TP = 1.37 ± 0.03 > 1 and VS|P = 0.88 ± 0.01 < 1
for the p̂ quadratures. Therefore, we succeeded in construct-
ing a QND gate that enables real-time QND measurements
for both conjugate quadratures with the bandwidth of about
100 MHz. For a more detailed analysis, we show the QND
quantities at each frequency in Fig. 4. All of TS, TP, and VS|P
satisfy the QND criteria up to about 100 MHz. As for VS|P, be-
cause of the finite bandwidth of the ancillary squeezed vacua,
the correlation degrades at higher frequencies; however, there
are still sub-shot-noise correlations for up to about 100 MHz.
The two output modes are entangled, which is described in
Appendix D.

V. CONCLUSIONS

We experimentally demonstrated an optical two-mode
QND interaction gate that enables real-time QND measure-
ments on temporally fluctuating random signals. We also
showed that the interaction works over a broad spectrum;
namely, up to about 100 MHz in the frequency domain. The
capability of the gate to deal with instantaneous signals is con-
firmed by the cancellation of random signals. The realization
of a broadband QND gate paves the way for achieving fault-
tolerant universal quantum computation with the time-domain
multiplexing schemes and many CV quantum protocols.
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APPENDIX A: DETAILED EXPERIMENTAL SETUP
AND FREQUENCY SPECTRA

1. Electric filters and response function

The homodyne signals for verification as well as the white
signals for the QND input are stored by an oscilloscope
(DPO7054, Tektronix) after a low-pass filter (LPF) and a
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FIG. 5. Frequency characteristics of the LPFs, obtained by a network analyzer (Keysight, E5061B). Blue is gain, dotted green is phase.

high-pass filter (HPF). The LPF is a commercially available
filter whose cutoff frequency is 100 MHz (Mini-Circuits,
BLP-100+). We plot the frequency characteristics of the LPF
in Fig. 5. The HPF is a homemade first-order filter with a
cutoff frequency of 1 MHz, which is used to remove low-
frequency noise around the laser carrier frequency. We plot
the frequency characteristics of the HPF in Fig. 6. The mode
function gmode(t ) is mainly determined by the LPF. The time-
domain response function gfilter (t ) calculated from the gain
and phase in Fig. 5 is shown in Fig. 7. As mentioned in
the main text, the time-reversal response function with time
shifts is the effective mode function gmode(t ) for the QND
measurements.

2. White signal source

Figure 8 shows the power spectrum of the white signal
used for the input of the QND gate. The white signal is
amplified thermal noise from resistors and operational am-
plifiers (OPA847, Texas Instruments). The trace in green
represents unfiltered signals, while the trace in blue represents
filtered signals which corresponds to the signals stored by the
oscilloscope in the actual QND experiment.

3. Homodyne detectors

Figure 9 shows the optical shot-noise spectra with a local
oscillator (LO) power of 10 mW, together with the detector
dark noise spectra, of the four homodyne detectors (two for
feed-forward operations and two for QND measurements). We

show both the filtered and unfiltered cases. The shot-noise
spectra are flat up to about 100 MHz for all of the four
detectors. The clearance between the shot noise and the dark
noise is more than 10 dB even at 100 MHz.

4. Ancillary squeezed vacua

Figure 10 shows the power spectra of the squeezed and
antisqueezed quadratures of the ancillary squeezed vacua nor-
malized by the shot noise spectrum. The power of the pump
beam is 85 mW. Both of the two squeezed vacua show about
−5 dB of squeezing at low frequencies and about −2 dB of
squeezing at 100 MHz. These spectra are in good agreement
with the bandwidths of the OPO cavities (about 150 MHz of
full width at half maximum).

5. Control of optical systems

To lock interference phases in the QND gate, we use weak
laser beams as phase references for each optical paths. These
reference beams are temporally turned on and off by switching
a pair of acousto-optic modulators (AOMs). We control the
optical systems by feedback when the reference beams are on,
while the system is held and the QND gate is tested when
they are off. The duration of ON time is 1400 μs and that of
OFF time is 600 μs. The QND measurement data are acquired
within 10 μs in the OFF time, during which the drift of the
optical system is negligible.

However, there are some beams which cannot be turned
off. Some are carrier beams to generate input random
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FIG. 6. Frequency characteristics of the HPFs, obtained by a network analyzer (Keysight, E5061B). Blue is gain, dotted green is phase.
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FIG. 7. Obtained response function of the LPF. Blue (top) shows
LPF-1, green (middle) shows LPF-2, red (bottom) shows LPF-3.

signals by modulations, and others are carrier beams for feed-
forward operations in the squeezing gates. The laser noise
of these beams disturbs the homodyne signals. The noise
by the input carrier beams is more significant than that by
the feed-forward carrier beams because of the differences in
optical path lengths. Since the input beams pass through the
optical delay line before interference with the LOs, the phase
noise looks larger in the output homodyne signals. This noise
is filtered out by the HPF in Fig. 6 and thus they are not
so significant problems, however, in order to further remove
them, we employ procedures as follows:
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FIG. 8. Power spectrum of the input white signal. Green (top)
shows unfiltered signal, blue (middle) shows filtered signal, red
(bottom) shows oscilloscope noise floor.

The optical setup for the input random signal is shown
in Fig. 11. For each of Input 1 and Input 2, three beams
are used. Beam 1 is the phase reference for the QND gate.
Beam 2 is the carrier beam to convert the random electronic
signals to optical signals by phase modulation. While Beam
1 is temporally turned off during data acquisition, Beam 2 is
always on. We use Beam 3, which is always on, for canceling
the carrier component of Beam 2, leaving only the modulation
sideband. Note that only Beam 1 is used when we use vacuum
states as input states. The quadrature to add the random signal
is selected via the relative phase between Beams 1 and 2. For
example, for Input 1, when Beams 1 and 2 are locked in phase,
the random signal is added to x̂ in

1 . On the other hand, when
Beams 1 and 2 are locked 90◦ out of phase, the random signal
is added to pin

1 . Beam 3 is always locked to the opposite phase
with Beam 2, removing the carrier component of Beam 2.

6. Feed-forward operation

The feed-forward operations in the squeezing gates cancel
the antisqueezed noise of the ancillary squeezed vacua. Here
we explain this by using equations. In the squeezing gate, first
the input state (quadrature operators x̂ in and p̂in) is coupled
with an ancillary squeezed state (quadrature operators x̂ (0)e−r

and p̂(0)er with a squeezing parameter r) by a beam splitter
with a reflectivity R:

x̂ int-1 =
√

Rx̂ in + √
1 − Rx̂ (0)e−r , (A1a)

p̂int-1 =
√

Rp̂in + √
1 − Rp̂(0)er , (A1b)

x̂ int-2 = √
1 − Rx̂ in −

√
Rx̂ (0)e−r , (A1c)

p̂int-2 = √
1 − Rp̂in −

√
Rp̂(0)er . (A1d)

Next, as a feed-forward operation, the antisqueezed
quadrature of a beam-splitter output p̂int-2 is measured and
used for cancellation of the antisqueezed noise p̂(0)er in the
other output quadrature p̂int-1,

x̂out = x̂ int-1 =
√

Rx̂ in + √
1 − Rx̂ (0)e−r , (A2a)

p̂out = p̂int-1 +
√

1 − R

R
p̂int-2 = 1√

R
p̂in. (A2b)

In the ideal limit of r → ∞, the excess noise term x̂ (0)e−r

vanishes, and Eq. (A2b) approaches the ideal squeezing trans-
formation where the squeezing degree is determined by the
reflectivity R.

For the cancellation of the antisqueezed noise, unlike
the previous narrowband experiments [17,18], the electronic
signal for the feed-forward must be synchronized with the
optical signal; in other words, the phase lags must be matched
at all the frequencies. For this purpose, we use high-speed
homodyne detectors and amplifiers with a flat gain and a linear
dispersion, and the optical delay line for the compensation of
the electronic delay. We confirmed the broadband cancellation
by using a network analyzer (MS4630B, ANRITSU), which
is shown in Figs. 12 and 13. Modulation signals are added
by an EOM before the OPOs to the ancillary quadratures to
be antisqueezed, and they are canceled by the feed-forward.
Figures 12(a), 12(b), 13(a), and 13(b) are the gains and phases
of the modulated reference beams through the optical delay
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FIG. 9. Noise power spectra of four homodyne detectors. (i) Green shows optical shot noise spectra without the LPF. (ii) Blue shows
optical shot noise spectra with the LPF. (iii) Cyan shows detector dark noise spectra without the LPF. (iv) Red shows detector dark noise
spectra with the LPF. (v) Magenta shows oscilloscope noise floor.

line. The gains decrease at higher frequencies due to the
bandwidth of the OPO cavities. They are used for calibra-
tion of the traces in the other figures in Figs. 12 and 13.
Figures 12(c), 12(d), 13(c), and 13(d) are the gains and phases
through the feed-forward electronic paths. The gains are flat
and the phases are opposite (180◦) for up to 100 MHz.
Figures 12(e), 12(f), 13(e), and 13(f) are the residual modula-
tion signals after the cancellation. The extinction ratios of the
modulated signals are more than 20 dB for up to 100 MHz.

APPENDIX B: RESPONSE OF QUANTUM
NONDEMOLITION GATE

1. General theory of response functions and cancellation

We consider a linear and static system

y(t ) =
∫

f (t − τ )w(τ )dτ + v(t ), (B1)

where f (t ) is a response function, w(t ) is an input signal,
y(t ) is an output signal, and v(t ) is an excess noise which is
independent of w(t ), i.e., the cross-correlation vanishes,

Rwv (t ) = 〈w(τ )v(τ + t )〉 =
∫

w(τ )v(τ + t )dτ = 0. (B2)
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FIG. 10. Noise power spectra of ancillary squeezed vacua, nor-
malized by the shot-noise spectrum. Green (upper) shows anti-
squeezed quadrature. Blue (lower) shows squeezed quadrature.

The response function f (t ) is obtained by deconvolution from
the input-output cross correlation. The autocorrelation Rww(t )
and the cross correlation Rwy (t ) are

Rww(t ) =
∫

w(τ )w(τ + t )dτ, (B3a)

Rwy (t ) =
∫

w(τ )y(τ + t )dτ

=
∫∫

w(τ )w(τ ′)f (τ − τ ′ + t )dτdτ ′, (B3b)

or in the frequency domain,

Sww(ω) = |W (ω)|2, (B4a)

Swy (ω) = |W (ω)|2F (ω). (B4b)

Therefore, the response function is obtained in the fre-
quency domain by

F (ω) = Swy (ω)

Sww(ω)
. (B5)

Beam-1

EOM
Beam-2

Beam-3
AOMAOM

QND gate

Random signal generation in Input-1

Random signal generation in Input-2

The same setup

Detector

Detector

for Input-2 
Fluctuating

signals

FIG. 11. Experimental setup for input signal preparation. Beam 2
is sent to either Input 1 or Input 2.
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FIG. 12. Cancellation of the modulated signal by the feed-forward in the squeezing gate A. (a), (b) Gain and phase of the reference beam
in the squeezing gate A, used for calibration of the other traces. (c), (d) Gain and phase of the feed-forward beam in the squeezing gate A. (e),
(f) The results of the cancellation of the modulated signal.

The obtained response function f (t ) gives the optimal cancel-
lation of the input signal, i.e.,〈[

y(t ) −
∫

h(t − τ )w(τ )dτ

]2〉

= 〈v2(t )〉 +
〈{∫

[f (t−τ )−h(t−τ )]w(τ )dτ

}2〉
, (B6)

which is minimized when h(t ) = f (t ). Note that the cross
terms vanish by using Eq. (B2).

2. Experimental response functions

If the QND gate is not working instantaneously, the QND
gate transformations in the time domain are generally in
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FIG. 13. Cancellation of the modulated signal by the feed-forward in the squeezing gate B. (a), (b) Gain and phase of the reference beam
in the squeezing gate B, used for calibration of the other traces. (c), (d) Gain and phase of the feed-forward beam in the squeezing gate B. (e),
(f) The results of the cancellation of the modulated signal.
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FIG. 14. Experimental input autocorrelation, input-output cross correlation, and response function (fin→1 ∗ f x
1→1 ∗ f1→out )(t ) in the time

domain (top panels) and in the frequency domain (bottom panels).

the form of

x̂out
1 (t ) =

∫
f x

1→1(t − τ )x̂ in
1 (τ )dτ + other noise terms,

(B7a)

x̂out
2 (t ) =

∫
f x

1→2(t − τ )x̂ in
1 (τ )dτ+

∫
f x

2→2(t − τ )x̂ in
2 (τ )dτ

+ other noise terms, (B7b)

p̂out
1 (t ) =

∫
f

p

1→1(t − τ )p̂in
1 (τ )dτ−

∫
f

p

2→1(t − τ )p̂in
2 (τ )dτ

+ other noise terms, (B7c)

p̂out
2 (t ) =

∫
f

p

2→2(t − τ )p̂in
2 (τ )dτ + other noise terms.

(B7d)

We want to apply the theory in Appendix B 1 to this QND
system. For the estimation of the response functions, the
random signals are used. As an example, we consider the case
where a random signal α(t ) is added to the vacuum fluctuation
x̂

(0)
1 (t ) as

x̂ in
1 (t ) = x̂

(0)
1 (t ) + α(t ), (B8)

and the other three quadratures are kept at vacuum levels.
In this case, in theory, by examining the transfer of the
random signal α(t ) to the two output quadratures xout

1 (t ) and
xout

2 (t ), response functions f x
1→1(t ) and f x

1→2(t ) are obtained,
respectively. Note that the vacuum fluctuations, although they
are white and random, cannot be used to estimate the response
functions. As discussed in Appendix B 1, the important thing
is that we know the input signal in order to obtain the
cross correlation. In reality, we cannot obtain the response

functions with the procedures in Appendix B 1. The actual
response functions obtained experimentally are (fin→k ∗
f

x,p

k→l ∗ fl→out)(t ), where fin→k (t ) is a response function of
a conversion from an electronic signal to an optical signal,
fl→out(t ) is a response function of a conversion from an opti-
cal signal to an electronic signal, and ∗ denotes a convolution.

As an example, we show the autocorrelation, the cross cor-
relation, and the obtained response function (fin→1 ∗ f x

1→1 ∗
f1→out)(t ) in Fig. 14. All the other experimentally estimated
response functions from the input electronic signals to output
the electronic signals are shown as traces (i)–(vi) in Fig. 15.
All the response functions have the same shape. Note that,
although we use LPFs and HPFs for output homodyne signals,
the same filters are applied before the storage of the input
signal as shown in Fig. 1(b) in the main text and thus the
effect of the filters are canceled in the response functions.
These response functions improve the cancellation in Fig. 3
in the main text. Figure 16 shows all the power spectra of
cancellation with and without the response functions when the
random signal is added to one of the four input quadratures
x̂ in

1 , x̂ in
2 , p̂in

1 , and p̂in
2 . Black, red, magenta, blue, and green

traces are the spectra for the shot noise as references, the
QND outputs with vacuum inputs, those with the random
signal input, the cancellation with the response functions,
and the cancellation without them, respectively. The signals
are perfectly canceled when the response functions are used,
which means that the evolution of the signals through the
QND gate is completely predictable.

However, we note that over-150-MHz components of the
response functions do not actually represent the response of
the QND gate but are determined by other reasons. For the
frequencies higher than 150 MHz, the homodyne signals are
highly attenuated by the LPF and thus electronic noise is
dominant. While this electronic noise has a negligible cross
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FIG. 15. Estimated response functions, used for the cancella-
tion in Fig. 16. (i) (fin→1 ∗ f x

1→1 ∗ f1→out )(t ). (ii) (fin→1 ∗ f x
1→2 ∗

f2→out )(t ). (iii) (fin→2 ∗ f x
2→2 ∗ f2→out )(t ). (iv) (fin→1 ∗ f

p

1→1 ∗
f1→out )(t ). (v) (fin→2 ∗ f

p

2→1 ∗ f1→out )(t ). (vi) (fin→2 ∗ f
p

2→2 ∗
f2→out )(t ). (vii) (fin→1 ∗ f1→out )(t ).

correlation between channels, it contributes to the autocorre-
lation. Even though we subtracted the background electronic
noise obtained without the optical LOs, there was still some
residual noise, by which the denominator becomes much
larger than the numerator in Eq. (B5) over 150 MHz. As a
result, the response functions look as if they have a limited
bandwidth of less than 150 MHz. The dull shape of the
response functions shown in Fig. 15 are because of these
situations.

To estimate the response function of the QND gate it-
self f

x,p

k→l (t ), we conducted the following experiment. As
references, we estimated the response functions (fin→1 ∗
f1→out)(t ) for conversion of electric signals to optical signals
and vice versa without the QND gate, and obtained a trace
(vii) in Fig. 15. Here, we assumed negligible differences
among peripheral response functions (fin→k ∗ fl→out)(t ). The
trace (vii) has the same shape as those of the traces (i)–(vi)
with a time difference of 11 ns. This time difference simply
represents the difference of the positions of the homodyne
detectors and does not directly represent the QND gate latency
of about 13 ns corresponding to the optical path length of
about 3.8 m. The response functions of the QND gate are
obtained by the deconvolution of the traces (i)–(vi) by the
trace (vii), and the results in the frequency domain are shown
in Fig. 17. The obtained spectra are flat for up to 100 MHz,
and thus we conclude that the response functions of the QND
gate are like a δ function in the considered timescale. Inner
products of all the traces (i)–(vii) in Fig. 15 with the time shift
of 11 ns are summarized in Table I.

APPENDIX C: TRANSFER COEFFICIENTS
AND CONDITIONAL VARIANCES

As discussed in Appendix B 2, the response of the QND
gate is like a δ function in the considered timescale. Therefore,
we can apply the conventional QND criteria [37] to the
filtered quadrature values at each time, without considering
a complicated mixing of quadratures at different times. Here,
we summarize the QND criteria, especially, the connections
between the QND quantities and the signal-to-noise ratios
(SNRs).

General linear conversions of a signal observable ÂS and a
probe observable ÂP by a nonideal QND gate are

Âout
S = GS,SÂ

in
S + GS,PÂ

in
P + GS,NCN̂COM + N̂S, (C1a)

Âout
P = GP,SÂ

in
S + GP,PÂ

in
P + GP,NCN̂COM + N̂P, (C1b)

where N̂COM is a correlated component, and N̂S and N̂P are
uncorrelated components, of excess noise of the gate. The
success criteria of the QND measurements are [37]

1 < TS + TP, VS|P < 1. (C2)

The transfer coefficients TS, TP and the conditional variance
VS|P are defined as

TS = C2
Âin

S Âout
S

=
∣∣〈Âin

S Âout
S

〉 − 〈
Âin

S

〉〈
Âout

S

〉∣∣2

VÂin
S
VÂout

S

, (C3a)

TP = C2
Âin

S Âout
P

=
∣∣〈Âin

S Âout
P

〉 − 〈
Âin

S

〉〈
Âout

P

〉∣∣2

VÂin
S
VÂout

P

, (C3b)

VS|P = VÂout
S

(
1 − C2

Âout
S Âout

P

)

= VÂout
S

(
1 − VÂout

S Âout
P

VÂout
S

VÂout
P

)

= VÂout
S

(
1 −

∣∣〈Âout
S Âout

P

〉 − 〈
Âout

S

〉〈
Âout

P

〉∣∣2

VÂout
S

VÂout
P

)
, (C3c)

where VX̂Ŷ , VX̂, and CX̂Ŷ are a covariance, a variance, and a
correlation, respectively,

VX̂Ŷ = 〈X̂Ŷ 〉 − 〈X̂〉〈Ŷ 〉, (C4a)

VX̂ = VX̂X̂, (C4b)

CX̂Ŷ = VX̂Ŷ√
VX̂VŶ

, (C4c)

and the signal input state is assumed to be a coherent state,
VÂin

S
= 1, i.e., the latter part of Eq. (C2) means that the

signal observable is squeezed by the QND measurement.
Note that the transfer coefficients and the conditional variance
are TS = 1, TP = G/(1 + G), and VS|P = 1/(1 + G2), for the
ideal QND interaction, Âout

S = Âin
S , Âout

P = GÂin
S + Âin

P , with
a coherent-state probe input VÂin

P
= 1. The excess noise of

the gate decreases the transfer coefficients and increase the
conditional variance. With the general linear conversions in
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FIG. 16. Power spectra of all the cases where a random signal is added to one of the input quadratures x̂ in
1 , x̂ in

2 , p̂in
1 , and p̂in

2 . Black (bottom)
shows shot noise. Red shows the QND outputs with vacuum-state inputs. Cyan (upper in left-end row) shows optical random signal at the
input. Dotted magenta shows the QND outputs with the random signal input. Dashed green shows cancellation of the random signal without
the response functions. Blue shows cancellation of the random signal with the response functions, which almost overlaps with red.
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FIG. 17. Response functions of the QND gate in the frequency domain. Blue shows response function |Fin→1(ω)F1→out(ω)|. Dotted green
shows response functions |Fin→1(ω)F x,p

k→l (ω)F1→out(ω)|. Red (bottom) shows response functions |F x,p

k→l (ω)|.

Eq. (C1), the transfer coefficients are

TS = G2
S,SVÂin

S

G2
S,SVÂin

S
+ G2

S,PVÂin
P

+ G2
S,NCVN̂COM

+ VN̂S

, (C5a)

TP = G2
P,SVÂin

S

G2
P,SVÂin

S
+ G2

P,PVÂin
P

+ G2
P,NCVN̂COM

+ VN̂P

, (C5b)

and the conditional variance is discussed later.
The transfer coefficients TS and TP are experimentally

obtained by examining the transfer of the SNRs. For this
purpose, we add a signal α to the signal input Âin

S = δÂin
S + α,

where δÂin
S is a vacuum noise fluctuation 〈δÂin

S 〉 = 0, VδÂin
S

=
1, and the power is compared with that of the case without the
input signal Âin

S = δÂin
S . The SNR at the signal input is

SNRin
S = α2

VÂin
S

=
〈(
δÂin

S + α
)2〉 − 〈(

δÂin
S

)2〉〈(
δÂin

S

)2〉 , (C6)

and thus obtained experimentally from the powers of the two
cases 〈(δÂin

S + α)2〉 and 〈(δÂin
S )2〉. On the other hand, the

TABLE I. Inner products between all the response functions (i)–
(vii) in Fig. 15.

Response function (i) (ii) (iii) (iv) (v) (vi) (vii)

(i) 1 0.989 0.991 0.990 0.994 0.990 0.976
(ii) 1 0.989 0.990 0.988 0.995 0.978
(iii) 1 0.985 0.986 0.990 0.972
(iv) 1 0.992 0.991 0.982
(v) 1 0.989 0.982
(vi) 1 0.981
(vii) 1

output signal and probe observables become Âout
S = δÂout

S +
GS,Sα and Âout

P = δÂout
P + GP,Sα, where δÂout

S and δÂout
P are

noise fluctuations without the input signal α. We assume
〈δÂout

S 〉 = 〈δÂout
P 〉 = 0 without loss of generality. The SNRs

at the signal and probe outputs are

SNRout
S = G2

S,Sα
2

VÂout
S

=
〈(
δÂout

S + GS,Sα
)2〉 − 〈(

δÂout
S

)2〉〈(
δÂout

S

)2〉
= G2

S,Sα
2

G2
S,SVÂin

S
+ G2

S,PVÂin
P

+ G2
S,NCVN̂COM

+ VN̂S

,

(C7a)

SNRout
P = G2

P,Sα
2

VÂout
P

=
〈(
δÂout

P + GP,Sα
)2〉 − 〈(

δÂout
P

)2〉〈(
δÂout

P

)2〉
= G2

P,Sα
2

G2
P,SVÂin

S
+ G2

P,PVÂin
P

+ G2
P,NCVN̂COM

+ VN̂S

,

(C7b)

and thus obtained experimentally from the powers of the two
cases 〈(δÂout

S + GS,Sα)2〉, 〈(δÂout
P + GP,Sα)2〉 and 〈(δÂout

S )2〉,
〈(δÂout

P )2〉. By using Eqs. (C5)–(C7), we obtain

TS = SNRout
S

SNRin
S

, TP = SNRout
P

SNRin
S

. (C8)

Therefore, TS and TP represent the degradation of the SNR
when the signal input α is transferred to the signal and probe
outputs, respectively.

The conditional variance VS|P corresponds to the minimum
variance of Âout

S − gÂout
P where the subtraction gain g is an

optimization parameter. The variance of Âout
S − gÂout

P is a
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TABLE II. Verification of transfer coefficients in the QND gate.
The coherent-state amplitude is injected either to x in

1 or pin
2 .

Coherent state input x in
1 pin

2

TS 0.86 ± 0.02 0.85 ± 0.02
TP 0.51 ± 0.01 0.52 ± 0.01
TS + TP 1.37 ± 0.03 1.37 ± 0.03
VS|P 0.88 ± 0.01 0.88 ± 0.01

quadratic polynomial in g,

VÂout
S −gÂout

P
= 〈(

δÂout
S − gδÂout

P

)2〉
= VÂout

P
g2 − 2VÂout

S Âout
P

g + VÂout
S

= VÂout
P

(
g − VÂout

S Âout
P

VÂout
P

)2

+ VS|P, (C9)

which is minimized at g = VÂout
S Âout

P
/VÂout

P
.

The experimental values are summarized in Table II. The
variances 〈(x̂out

1 − gxx̂
out
2 )2〉 and 〈(gpp̂out

1 + p̂out
2 )2〉 for vari-

ous subtraction and addition gains are plotted in Fig. 18.

APPENDIX D: QUANTUM ENTANGLEMENT

The sub-shot-noise conditional variances VS|P < 1 in both
of the x̂ and p̂ quadratures are not a sufficient condition
for entanglement. A sufficient condition based on the Duan–
Simon criterion is [17,39,40]

∃ g,
〈(
x̂out

1 − gx̂out
2

)2〉 + 〈(
gp̂out

1 + gp̂out
2

)2〉
< 4|g|. (D1)
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FIG. 18. Normalized variances (dimensionless) of (a) x̂out
1 −

gxx̂
out
2 and (b) gpp̂out

1 + p̂out
2 . Cyan (upper) markers show experimen-

tal results when ancillary squeezed vacua are not used. Red (lower)
markers show experimental results when ancillary squeezed vacua
are used. Green (top) curves show theoretical variance when ancil-
lary squeezed vacua are not used. Magenta (middle) curves show
theoretical variance when ancillary squeezed vacua with −2.8 dB of
squeezing are used. Blue (bottom) curves show theoretical variance
for the ideal QND interaction with G = 1. Gray lines show entangled
criterion.

In Fig. 18, there are gray lines 〈(x̂out
1 − gx̂out

2 )2〉 = 2|g| and
〈(gp̂out

1 + p̂out
2 )2〉 = 2|g|, and there is a region of g where

red markers are below the gray lines in both quadratures.
Therefore, the two output modes are entangled for coherent-
state inputs.
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