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Implementation of a quantum cubic gate by an adaptive non-Gaussian measurement

Kazunori Miyata,""" Hisashi Ogawa,' Petr Marek,” Radim Filip,> Hidehiro Yonezawa,’
Jun-ichi Yoshikawa,' and Akira Furusawa'-f
' Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
2Department of Optics, Palacky University, 17. listopadu 1192/12, 77146 Olomouc, Czech Republic
3Centre for Quantum Computation and Communication Technology, School of Engineering and Information Technology,
University of New South Wales Canberra, Australian Capital Territory 2610, Australia
(Received 31 July 2015; published 1 February 2016)

We present a concept of non-Gaussian measurement composed of a non-Gaussian ancillary state, linear optics,
and adaptive heterodyne measurement, and on the basis of this we also propose a simple scheme of implementing
a quantum cubic gate on a traveling light beam. In analysis of the cubic gate in the Heisenberg representation,
we find that nonlinearity of the gate is independent from nonclassicality; the nonlinearity is generated solely by
a classical nonlinear adaptive control in a measurement-and-feedforward process, while the nonclassicality is
attached by the non-Gaussian ancilla that suppresses excess noise in the output. By exploiting the noise term as
a figure of merit, we consider the optimum non-Gaussian ancilla that can be prepared within reach of current

technologies and discuss performance of the gate. It is a crucial step towards experimental implementation of the

quantum cubic gate.
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I. INTRODUCTION

Development and application of quantum physics crucially
rely on progress in quantum operations with various physical
systems. For discrete-variable systems, a basic controlled-
NOT nonlinear gate [1] has been already demonstrated with
many systems [2—5] and the current problem is scalability of
their implementations. On the other hand, for more complex
continuous-variable (CV) systems [6], a full set of basic
operations has not been closed yet. It was proven that in order
to synthesize an arbitrary unitary operation, it is enough to add
a cubic nonlinear operation to the already existing Gaussian
operations [7]. Any nonlinearity can be principally obtained
from a chain of the Gaussian operations, the cubic nonlinearity,
and feedforward corrections [7,8]. The cubic nonlinearity is
therefore a bottleneck of CV quantum physics.

Already a decade ago, Gottesman, Kitaev, and Preskill
(GKP) suggested a way to implement a cubic nonlinear
gate based on Gaussian operations, Gaussian measurement,
quadratic feedforward correction, and an ancillary cubic state
produced by the cubic nonlinearity [9]. Various approaches
towards the cubic gate have followed [10-13]. Particularly in
the field of quantum optics, most of the components of the
cubic gate have been experimentally demonstrated, mainly
because of the high quality of generating squeezed states
and efficient homodyne detection. The Gaussian operations
have been already mastered [14—16], utilizing a concept of
measurement-induced operations [17]. Furthermore, they have
been tested on non-Gaussian states of light [18] to prove their
general applicability. Recently, the quadratic electro-optical
feedforward control has been demonstrated [19]. In addition,
to independently obtain the cubic state, a finite dimensional ap-
proximation of the cubic state has been suggested [20] and its
performance in the GKP scheme has been discussed. The cubic
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state has been experimentally generated as a superposition of
photons and verified [21]. Potentially, such a superposition
state can be stored in and retrieved from recently developed
optical quantum memories [22,23]. In order to make resource
nonclassical states compatible with the measurement-based
scheme, real-time quadrature measurement of a single-photon
state has been demonstrated [24].

A drawback of the original GKP idea is that it requires
to implement the quantum nondemolition gate, i.e., the CV
controlled-NOT gate [17], and a squeezing feedforward that
depends on the measurement result. While each of them has
been already demonstrated [15,19], the total implementation
to build a unitary cubic operation demands three squeezed
states as well as one non-Gaussian ancilla and is probably not
the simplest arrangement. In contrast, we here use adaptability
of linear optical schemes and propose a better and simpler
topology with linear optics and suitable ancillary states.

Our approach is to tuck all the non-Gaussian aspects into the
measurement process. The topology will be then similar to the
simple one used for a measurement-induced squeezing gate
[14,17-19,25]. Non-Gaussian operations can be realized by
simply substituting a measurement of nonlinear combination
of quadrature amplitudes for the Gaussian homodyne mea-
surement [26,27]. We construct such a measurement in a form
of a generalized non-Gaussian measurement by combining
ordinary Gaussian measurement tools with non-Gaussian
ancillary states that can be prepared with photon detection. In
fact, we can exploit arbitrary superpositions of photon-number
states up to certain photon level within reach of current
technologies [21,28,29].

In this paper, we first provide an idea of non-Gaussian
measurement comprising a non-Gaussian ancillary state, linear
optics, and adaptive heterodyne measurement. Using the non-
Gaussian measurement, we next propose a simple schematic
of a quantum cubic gate based on the measurement-induced
operation scheme, whose resource states are only one squeezed
vacuum and one non-Gaussian state. While in previous work
the input-output relation of the cubic gate has been investigated
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in the Schrodinger picture, here we analyze the gate in the
Heisenberg picture to include imperfections in the scheme.
We then find that nonlinearity of the gate is independent
from nonclassicality. Specifically, the nonlinearity is gen-
erated solely by a classical nonlinear adaptive control in
a measurement-and-feedforward process regardless of the
non-Gaussian ancilla. On the other hand, the nonclassicality is
attached by the ancilla that compensates residual noise in the
output. Finally, we discuss an overall performance of the cubic
gate in such a topology and consider non-Gaussian ancillary
superposition states up to a certain photon level to investigate
how well the unwanted noise can be suppressed in the gate.

II. MINIMAL IMPLEMENTATION OF
MEASUREMENT-INDUCED QUANTUM OPERATIONS

A measurement-induced quantum operation scheme [17]
decomposes various quadratic operations into linear optics,
displacement operation, homodyne detection, and offline
squeezed light beams, which are readily available in actual
optical experiments. One of the realizations of the scheme is
the basic squeezing gate. First we combine an input state |r)
and an eigenstate |x = 0) of the position quadrature X at a
beam splitter whose transmittance is represented by /7. We
then measure the momentum quadrature p of one of the optical
modes and obtain a value y. Finally, we apply displacement to
the p quadrature of the remaining mode with the value pgis, =
/(1 —T)/Ty and obtain a squeezed output state. Ideally the
output is a pure state S|y), where S is an x-squeezing operator
defined as ST£S = +/T% and §Tp8 = p/+/T. In the case of
implementing p squeezing, it is enough to replace the ancillary
x eigenstate with the p eigenstate |p = 0) and exchange the
roles of x and p quadratures. This type of operation has
been successfully demonstrated in [14,18], where the position
eigenstate is replaced with the squeezed vacuum.

On the basis of one-way CV cluster computation [26,27],
we can generalize the basic squeezing gate to minimal single-
mode implementation of arbitrary-order quantum operations
as shown in Fig. 1. The homodyne detector in the squeezing
gate is now replaced with a detector that measures a general
quadrature UJ %) 13[7"()?), where the unitary operator U,,()?)
is defined as nth-order phase gate U,(%) = exp(iyx") with a
real parameter y. Hereafter we set i = 1 for simplicity. The
measured general quadrature is thus p + ny£"~!. In the ideal

Un ()t pU, (%)
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FIG. 1. Minimal single-mode implementation of measurement-
induced quantum operation.
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case, the output state is expressed as SU,(v/1 — T£)|v). This
gate deterministically applies the phase gate to the input state
with the additional constant squeezing that can be compensated
by another squeezer.

It is known that an arbitrary single-mode unitary can be
decomposed into the set of gates Un (%) forn = 1,2,3 for all
y € R, together with the 7 /2 phase shift [8,27]. This also
holds when we exploit the minimal implementation in Fig. 1.
01 (%) is the trivial displacement operation, and Uz()?) has
been experimentally demonstrated [19,25]. The remained task
is thus to realize a cubic gate Us(%). We now consider how to
construct measurement of the nonlinear quadrature p + 3y £2
with affordable apparatuses, as explained in the following
sections.

III. NON-GAUSSIAN MEASUREMENT BY GENERALIZED
HETERODYNE DETECTION

A. Projecting on pure states

In quantum physics, measurements are represented by
operators. In the simplest case of von Neumann measurements,
these operators are simply projectors on particular quantum
states. In the case of the keystone measurement of CV
quantum optics, the homodyne detection, each measurement
result indicates that the measured state was projected on an
eigenstate of the measured quadrature operator. Analogously,
the heterodyne detection, which can be modeled by a pair
of homodyne detectors simultaneously measuring conjugate
quadratures of a mode split by a balanced beam splitter
[30], implements a projection onto a coherent state. Both
of these kinds of measurements are Gaussian—the measured
quadrature distribution is Gaussian if the measured state is
Gaussian.

One way to achieve a non-Gaussian measurement is to
take advantage of non-Gaussian states in combination with
the standard heterodyne detection schemes. The basic idea
of the measurement is best explained in the x representation.
Consider that we have a standard heterodyne detection config-
uration, where the idle port of the beam splitter is not injected
by a vacuum but by a specifically prepared ancillary state
[YA) = f Ya(x)|x)dx. For a particular pair of measurement
results ¢ and y, the procedure implements projection onto a
state

D(V2q +ivV2y)T|ya). (1)

Here D(a) = exp{i«/zﬁ Im[a] — i«/zﬁ Re[a]} stands for the
displacement operator and 7 is the time-reversal antiunitary
operator represented by 7737 =% and T1p7T = —p. To
derive the expression (1), we can start with the projection
states of the pair of homodyne detectors

(x1 =ql{p2 = yl. )

If we take into account the unitary balanced beam splitter, the
projection state becomes
< —qtx

/ dx <C] + X2
2
V2 V2
During the measurement, this state will be jointly projected
onto the measured and the ancillary state. The measured state

e, 3)

022301-2



IMPLEMENTATION OF A QUANTUM CUBIC GATE BY AN ...

is unknown, but we can already apply the ancilla in the second
mode. This reduces the state to

q+x —q+x\
dx < IﬁA( )e B “4)
/ V2 V2
where the subscript was dropped because it was no longer

needed. After a straightforward substitution we can express
the projection state as

/ dx 3 (x)e’™Y > x + V2g). (5)

Since the time-reversal operator corresponds to complex
conjugate in the x representation, the expression (5) is the
same as Eq. (1). For ¢ = y = 0, we obtain simple projection
onto the given ancillary state f Y*(x)|x)dx. We can see that
if the ancillary mode is in the vacuum or a coherent state, the
measurement remains the simple heterodyne detection, as is
expected. However, if the ancilla is non-Gaussian, we obtain
a truly non-Gaussian measurement.

B. Projecting on impure states

In a realistic scenario, the ancillary state will be generally
not pure. To take this into account, it is best to abandon the x
representation and employ the formalism of Wigner functions.
The basic premise, however, remains. The measurement still
implements projection onto a specific state, only this time the
state will be represented by a Wigner function. Specifically,
for a signal two-mode state represented by a Wigner function
Ws(xo, po,x1, p1), the outcome of a measurement performed
on mode 1 yielding a pair of values ¢ and y results in the
Wigner function

Wou(xo, polq.y)

<x / dxrdpy Ws(xo, po,x1,p)Wat (1 pi1gsy)s (6)

where the function Wy(xy,pilq,y) represents the projector
on the particular state. In our scenario, in which the pair
of homodyne detectors are supplied with an ancillary state
corresponding to a Wigner function Wa(x, p), the projector
function can be found as

Wa(x.plg.y) = 2Walx = V2. — p+v2y). (7))
We can see that this form agrees with Eq. (1) if we realize that
the time-reversal operator 7 transforms the Wigner function
variables as (x, p) — (x, — p). The relation (7) can be derived
in the same way as relation (1). We start with the homodyne
measurement projector functions, here represented by the pair
of § functions 6(x; — ¢)8(p> — y), which we then propagate
through the beam splitter and apply to the ancillary state,
resulting in

X —Xx
Wmxi,pilg,y) = /dX2dP2WA(x2,P2)5< ]ﬁ - _q)

P11+ p2
Sl ———y). 8
X( V2 y) ®)
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C. Arbitrary Gaussian operations within the measurement

One may desire to apply Gaussian operation to the non-
Gaussian ancilla because some Gaussian operations (such as
squeezing) enhance certain features of the state. Here we show
that, instead of projecting on a raw non-Gaussian state, we
can alter the measurement so it projects on a non-Gaussian
state altered by an arbitrary Gaussian operation. This can be
enormously useful because we do not need to implement an
additional Hamiltonian that often makes the state impure in
actual experiments. Note that we are disregarding displace-
ment because that can be achieved simply by displacing
the measurement results. For a pair of quadrature variables
x and p, an arbitrary Gaussian operation is represented
by a real two-by-two symplectic matrix S whose elements
satisfy s1152 — 12521 = 1. If we consider that phase shift
can be implemented “for free,” the arbitrary Gaussian unitary
transformation reduces to

/ / 1

X =zix, p = Zp+Z2x, 9
where z; and z, are arbitrary real parameters. To achieve this
transformation, we must modify the measurement setup in
two ways. First, the balanced beam splitter in Eq. (3) will be
removed and replaced by a beam splitter with transmittance
T and reflectance R = 1 — T. Second, instead of measuring
quadrature p, we measure quadrature p,(6) = prcos6 +
X, sin 6. The projection functions of the measurements them-
selves in Eq. (8) are then

8(x1 — q)8(pacosh + xpsinfh — y). (10)

Using the same steps we used to arrive at Eq. (7) we can now
obtain the generalized projection function

T

Wai(x.plg.y) = (,/ L
M P |«/RTcost9| R \/_ T’
tan 6 qtan9

\/_ VR ﬁcos@)‘

We can immediately see that after the time-reversal operations,
we have z; = /T/R and z, = tan6/+/RT and these two
parameters can attain arbitrary real values. As a consequence,
after addition of a phase shift the function (11) implements
projection onto the ancillary state altered by an arbitrary
Gaussian operation.

It is worth pointing out that the two homodyne measure-
ments need not be independent. One of the measurements can
have parameters changing based on the results of the other
one, thus creating a sort of adaptive measurement scheme.
For example, the measurement phase 6 can depend on the
measurement result g. This can be used to induce a nonlinear
behavior, as we see in Sec. IV B.

(1)

IV. IMPLEMENTATION OF A CUBIC GATE

A. With nonadaptive non-Gaussian measurement
In this section we apply the non-Gaussian measurement to
a particular task: the implementation of a nonlinear cubic gate
U =e7 toan arbitrary quantum state. In terms of quadrature
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operators, the gate performs transformation

=%, p=p+3yi’ (12)
Before proceeding to a scheme with the adaptive heterodyne
measurement, we first consider implementation with nonadap-
tive measurement expressed by Eq. (1).

The basic principle of the operation can be quickly
explained in the x representation. The unknown input state |y/)
is mixed with a squeezed state on a balanced beam splitter. If
we for ease of explanation consider the infinite squeezing, the
resulting two-mode state can be expressed as

—> (13)

Jorol 5l

After applying non-Gaussian measurement (4) on one of the
modes, we obtain the projected state in the form

/ dx%(% - ﬁq)l/f(x)e‘”‘y 72>, (14)

where ¢ and y are again the homodyne measurement results
and Ya(x) is the wave function of the ancillary state. For
implementing the cubic gate, Y¥a(x) has to be cubically
dependent on x and is ideally in a state

X

X

[Ya) = / dx exp(iyx®)|x) (15)
and the whole operation would lead to
exp(—i3v/2y g2 expli(6y q* — v/2y)& 1 exp(iy £°)

X /dxlp(x) %> (16)

This is almost exactly the desired output state. The only
difference is a constant squeezing and two unitary operations
depending on the measured values. The constant squeezing
can be fully compensated either before or after the opera-
tion and the measurement-dependent unitary operations can
be removed by a proper feedforward. This is exactly the
same principle as employed by the CV teleportation and
CV measurement-induced operations. While each particular
measurement result projects on a different quantum state, these
states belong to the same family and the proper operation can
smear the differences and produce a quantum state independent
of the measurement result. This allows the whole procedure to
operate deterministically.

B. With adaptive non-Gaussian measurement

In Eq. (16) we need quadratic feedforward in the form
of adjustable squeezing. Thus, the topology here is not as
simple as the minimal implementation depicted in Fig. 1. To
realize measurement of the nonlinear quadrature p + 3y £2, we
exploit the adaptive non-Gaussian heterodyne measurement.
According to the results in Sec. III C, by altering the phase of
the second measurement, we can project onto a transformed

PHYSICAL REVIEW A 93, 022301 (2016)

Non-Gaussian measurement
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FIG. 2. Schematic of a cubic gate. BBS, balanced beam splitter;
HOM, homodyne measurement; LO, local oscillator; PS, phase shift;
NL, nonlinear classical calculation. While all the optics are linear,
the classical circuit involves nonlinear calculations that makes the
feedforward nonlinear. The nonlinear classical circuits have been
already devised in the experiment of dynamic squeezing [19].

ancillary state,

N 2 A a2
D[ﬁq +i ( V2 NGY tan@)]Te”‘ @y (17)
cos 6
Again, g and y are the measured values in the heterodyne
detection, and |¥A) is the cubic state (15). We then substitute
34/2yq for tan 6. After simple algebras we find the projection
state

exp(—iy®*)|p = (18)

cosf

ﬁy>

which means an eigenstate of the nonlinear quadrature
p + 3yx? with the eigenvalue V2y/cos . This scheme can
be illustrated as Fig. 2. Here the quadrature basis of the
second homodyne detection is determined by the result of
the first homodyne detection. As a result, the heterodyne
detection and the classical calculation compose a module
of non-Gaussian measurement, and the feedforward is now
the simple displacement operation. After all, the required
optical operations are displacement and beam splitters together
with homodyne measurements, all of which are ubiquitous in
quantum-optical experiments.

To explicitly show how this scheme works, it is instructive
to employ the Heisenberg representation, which would have
the added benefit of incorporating the imperfections arising
from the realistic experimental implementation, e.g., finite
squeezing. Let the unknown signal mode be labeled by “0” and
described by quadrature operators X, and py. After combining
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the initial state in mode “0” with the squeezed state in mode “1”
and with the non-Gaussian ancilla in mode “2”, the respective
quadrature operators read

1 1
Xy = —=%0— —=%, (19a)
LN N
1 1
Py = —=hPo— —=h1, (19b)
V2 2
1 1 1
R =R+ =k — —=%, (20a)
2 2 V2
1 1 1
Py = zPo+ zp1 — —=pa, (20b)
2 2 J2
1 1
B= 5k +oh+ ﬁﬁz, (21a)
R D
Py=sPo+ P+ (21b)

El’z-

In the next step we measure the x quadrature of mode 1’
and obtain value g. We can now use the value to adjust the
measured phase of the second homodyne detector. In effect,
we end up measuring the value y of quadrature operator
%) sin@ + p)cosf, where 6 = arctan(3+/2y¢). Note that,
since 6 nonlinearly depends on ¢, which carries information
of X| quadrature, we can interpret this type of measurement as
the origin of nonlinearity of the gate. The quadrature operators
of the output mode can be now expressed in terms of the
measured values as

2 2

1
&)= —%— (22a)

L,
—X1,
NN
V2y

P = V2po+ p2 + Lo + 5172281 22b)
2 cos 6
The last term of the p quadrature, which is the only term
explicitly depending on the measured values ¢ and y, can be
removed by a suitable displacement and we are then left with
the final form of the operators:

1 1
¥ = —%) — —=4%1, (23a)
LNV
PG = ﬁ(ﬁo A )%2) + (p2 = 3r3)
0 2\/§ 0 2
1
+3y (20)2] + 5)%12). (23b)

Both of the first terms in Eq. (23) represent the ideal cubic
operation, i.e., combination of the cubic gate e'?@/v2" and
the constant squeezing mentioned in Sec. II. Those terms do
not depend on the quadratures of the other ancillary states.
Differently from the output (16) in Sec. IV A, in the Heisenberg
representation we can say that the cubic nonlinearity comes
from the adaptive non-Gaussian measurement and feedforward
regardless of the ancillary states.

Naturally, the ancillary states are still required to complete
the operation since the outputs have residual terms. It is
straightforward to find the ideal ancillary state in mode 1 as the
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quadrature eigenstate |[x = 0); because the state affects only
the last terms of Eq. (23) and they vanish when £; — 0. In
experimental implementation, we approach the ideal state by
using squeezed vacuum states.

On the other hand, the middle term of Eq. (23b), pnig =
P2 — 3)/)222, depends solely on the ancilla in mode 2. This term
vanishes when the ancilla is the ideal cubic state (15). This
state is best approached by considering physical states that
squeeze the nonlinear quadrature pniq, as discussed in the
next section.

V. OPTIMAL ANCILLARY STATE

To find suitable states in mode 2, we can use the expectation
value and the variance of the nonlinear quadrature pniq as
figures of merit, both of which should be approaching zero.
Here we consider preparing the ancillary state that can be
generated within reach of current technologies. On one hand,
arbitrary superpositions of photon-number states up to the
three-photon level |{y—3) can be prepared [21,29], and the
photon-number limit can, in principle, be incremented. On
the other hand, we can perform universal Gaussian operation
UG onto any input state [14-16]. Then the ancilla best
suited for our purposes can be found in a form Ug|yy) by
optimizing over all superposition states up to N-photon level
|¥x) and all Gaussian operations Ug that can be applied on
the state afterwards. In this way, we are using the expensive
non-Gaussian resources only for the key non-Gaussian features
of the state [31].

Our goal is to find a state ﬁgWN) that minimizes
the expectation value (pnrg) and the variance V(pnrg) =
((PnLQ — (Pnro))?). The operator is symmetric with respect
to space inversion, X, — —X,, and has a linear term of
p>. Accordingly the relevant Gaussian operations are the
p displacement represented by p, — p» + po, and the x
squeezing represented by X, — X,/A and p, — Ap,, where
po and A are arbitrary real parameters. Thus, the nonlinear
quadrature after suitable Gaussian operations is represented as

AN 2

UgﬁNLQUG =y |:)~/ﬁ2 - 3(%) ] + po, (24)
where A’ = A/y!/3. From this point of view, we can see that
the expectation value (pniq) vanishes when we apply suitable
displacement py. On the other hand, the variance V (pnLg) can
be minimized by optimizing the state |1y ) and the parameter
A’. Furthermore, since A’ can be any real number, we can say
that the optimum state does not depend on y. We therefore
use the variance of A'py — 3(%,/A')* as the actual figure of
merit to derive the optimum state |1ry) and the corresponding
parameter 1.

Let V¥ be the minimum value of the variance V(pniq)
with the optimum state [/ and the optimal parameter A",
Note that V™ represents the Gaussian limit, the minimum
variances when the state is optimized over all Gaussian
states. Then the relative noise V:,pt / V(;) Pt as shown in Fig. 3,
represents the ratio of the minimum noise to the Gaussian
limit and is independent from y. We can see that the variance
decreases approaching zero with N and that even a state
obtained as a superposition of zero and one photon gives
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FIG. 3. Variances of the nonlinear quadrature with the optimized
photon-number-state superpositions up to N photons, normalized by
the Gaussian limit V" '. The parameter ) is optimized over to find
the minimum of the variance.

a substantial benefit over the Gaussian limit. To present the
optimized states, we represent the optimal approximate state
up to the N-photon level by [yv') = 3N c7™|n) and plot
absolute values of the coefficients in Fig. 4. The superposition
of vacuum and single-photon states is readily available today,
and generation of arbitrary superposition up to three photons
has been demonstrated [21,29]. In the case of optimizing
the superposition state up to three photons, the optimal

FIG. 4. Absolute values of the coefficients of the optimal finite
approximation of ancillary states for various upper bounds of photon
number N. Note that the coefficients of even-number photons are
real and odd-number photons imaginary, due to the symmetry of the
nonlinear quadrature p — 3y £* with respect to £ — —%.
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approximate state looks as
W;}L) o 0.17]0) — 0.56i|1) — 0.73]2) 4+ 0.35{|3). (25)

The state is different from the cubic state from [20] because
of the different derivation of the states. In [20], the state was
determined as if it was produced by applying the cubic gate to
the vacuum without considering optimization over squeezing
and displacement. On the other hand, the present state (25) is
derived so that its overall suitability as the ancilla is maximized
with suitable Gaussian operations. In either case, the state
can be prepared by the same experimental method [21,29].
Note that, although the method can be adopted to generate
the optimum superpositions up to arbitrary photon level,
it is difficult to generate large-photon-number superposition
states because the generation rate exponentially decays as
the maximum photon number increases. This difficulty is
expected to be remedied by exploiting a recently devised
all-optical memory [22], which enables us to improve the
generation rate and consequently to prepare superpositions
up to four- or larger-photon-number states. Another way in
the future could be to exploit quantum optomechanics with
nanoparticles, which has a clear potential to produce the cubic
states of mechanical oscillators in optical potential [32-34].
These mechanical states can be efficiently read out to another
light mode [35] and then used as the optical cubic states.

The cubic nature of the states is also nicely visible from
their Wigner functions as depicted in Fig. 5. For comparison,
we check the Wigner function of the ideal cubic state [11],

1/3 4713
Ai([—} [3yx2—p]>, 26)
3y

where Ai(x) is the Airy function and N a temporary
normalization factor. Since the ideal cubic state has infinite
energy, it is unnormalizable. The Wigner function (26) is
expediently normalized over the displayed area in Fig. 5(a).
We can see that the Wigner function is symmetric with respect
to the p axis and has an oscillating parabolic shape. These
characteristics also appear in the approximate cubic states
shown in Figs. 5(b)-5(e). We should point out that it is
impossible to define meaningful fidelities between the ideal
cubic state 5(a) and its approximate states 5(b)-5(e). The cubic
state has infinite energy, and its Wigner function (26) has
constant values along the parabolic lines on the phase space
to the points at infinity. Therefore, the overlap between the
ideal infinite-energy state and any finite-energy state should
be zero. We can see that, however, as the upper limit of photon
number becomes larger, the number of fringes along the p
direction increases approaching the ideal one. Those Wigner
functions of the approximate states can be considered to show
core non-Gaussianity that then spreads out on the phase space
by the following optimized squeezing.

So far we have not considered how to implement the
optimized squeezing onto the core non-Gaussian state. Ac-
tually, instead of adding another squeezing gate, the squeezing
operation can be embedded into the adaptive non-Gaussian
measurement by using the results in Sec. III C. We discuss the
details of it in Appendix A.

Finally, we comment on determining requirements for
the fidelity of the cubic gate and quality of the ancillae.

Wx,p) = 27t/\/'i
3y
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FIG. 5. Wigner functions of the optimal ancillary states. (a)
The ideal cubic state for y = 0.1 (expediently normalized over the
displayed area), (b) N =1,(c) N =3,(d) N =5, () N =9. Note
that the approximate states have offsets in the p direction, which can
be compensated by p displacement.

In general, requirements for quantum gates and resources
crucially depend on their applications, whose studies are
still in rapid progress. One example of the requirements for
resources is squeezing level of ancillary squeezed states. In CV
quantum teleportation [36] of coherent states, one can confirm
that the squeezing level of 20 dB in the entangled resource
states results in 1072 infidelity between the input and the
output. While the CV regime has advantages in unconditional
and deterministic quantum operations in actual experiments,
this infidelity is not as good as we expect in exchange for
the required energy compared to its discrete-variable (DV)
counterparts. This drawback could be, however, reduced in
hybrid quantum information processing where information is
encoded in DV states and processed by CV operations [6].
In the case of the GKP encoding [9], it has been shown that
no more than a 20.5-dB squeezing level in resource states
of CV one-way quantum computing is enough to achieve a
fault-tolerance threshold of 10~° for a (conservative) qubit
error-correction code [37,38]. Realization of the code has been
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approached by 12.7-dB quantum-optical squeezing [39,40]
and even 17.6-dB spin squeezing [41]. Furthermore, a recent
study has shown that the fault-tolerance threshold of local
depolarizing noise per qubit can be given by 13.6% [42], which
is less strict. The above suggests that the same resources can
result in achieving different error rates that differ by orders of
magnitude depending on the applications, and more tractable
requirements can be found by furthering the studies of quantum
protocols. Similarly, requirements for the cubic gate are also
expected to be settled in a practical way, but it is still an open
question.

VI. CONCLUSION

We have introduced the concept of an adaptive non-
Gaussian measurement: a CV measurement with a set of
possible values, each of which is associated with a projection
onto a non-Gaussian state. The measurement is realized
by a pair of homodyne detectors and a supply of suitable
non-Gaussian ancillary states. One particular advantage of
this measurement is that an arbitrary Gaussian operation can
be implemented on the soon-to-be-measured quantum system
simply by tools of passive linear optics. In addition, some
non-Gaussian operations can be implemented in the same way
by making some of the measurement parameters dependent on
already measured values.

To demonstrate this design feature, we have proposed a
method of realizing the cubic gate [20]. The current proposal
does not require active operations to be performed on the
transformed quantum system, all of them being part of
the non-Gaussian measurement, which significantly improves
the feasibility of the setup. Specifically in the Heisenberg
representation, it turns out that nonlinearity of the gate is
created classically while the nonclassicality is given by the
non-Gaussian ancilla in terms of reducing residual noise.
By exploiting the noise term as a figure of merit, we have
found a new class of ancillary states that promise better
performance than the states of [21]. The final implementation
of the complete cubic gate can be therefore expected soon.
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APPENDIX A: CUBIC GATE WITH UNBALANCED
ADAPTIVE NON-GAUSSIAN MEASUREMENT

By replacing BBS2 in Fig. 2 with an unbalanced beam
splitter, we have another degree of freedom to effectively apply
arbitrary squeezing operation onto the ancillary non-Gaussian
state, as shown in Sec. III C. Thus, the Gaussian optimization
discussed in Sec. V can be embedded in the cubic-gate
schematic.
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We explain here an input-output relationship of the cubic
gate with unbalanced beam splitters. Transmittance and re-
flectance of the first beam splitter are represented as 77 and
Ry =1 — Ty, respectively. T, and R, are also defined in the
same way for the second beam splitter. After the beam-splitter
transformations, the quadratures of the output modes are

=V Thi%o — \/Rizlel, (Ala)
Py = Tipo— /R, (Alb)
% = VR Tofo + VT Tok1 — v/ Rota, (A2a)
P, = VRiTopo+VTiTapr — VRaps,  (A2b)
)eé = R1R2)20 =+ \/ﬁ)@] + TZ)?Z» (A3a)
Py =vVRiR:po+VTiRopr +v/Topa. (A3b)

After measuring the x quadrature of mode 1’ and obtaining
value g, we set the phase factor

T
6 = arctan (6 2 (A4)

)
q).
VR
Then we measure the quadrature £ sin 6 + p5, cos 6 and obtain
value y. The p quadrature of the unmeasured mode 0’ can be
expressed with the measured values g and y as

By= ——po— -,
0 VT 0 W Ti R, cos6

R T, R (T\" ,
f e IRi(T>
+ T1Rzp2 v T1<R2> 1

ORIy .  6VRiDy
( 3240 + 35 )4 (AS)
~TiR; R;
We apply p displacement to this quadrature with value
Daiey = VR y 3J/VR1T2(T2—R2)q2 (A6)
disp /T R; cos 0 JT; R;/Z
and obtain the output quadratures
W~ IR Ry
Xog = T1 X0 — Txl ) (A7a)
1
» 1 543 <R1 T2>3/2 >
= — — X
Po ﬁ Po Y R, 0
R\ T, )
5 — 3%
R, (Pz sz)
n\*? 1/n o,
6y R\VT| — YoX1 + =,/ —%X .
+ 6y Ry 1<R2> x0x1+2 Rlxl
(A7b)

We can see that the outputs are equal to Eq. (23) if we set
T, = Ry =T, = R, = 1/2. Note that, if we use unbalanced
beam splitters, the displacement has a quadratic term as shown
in Eq. (A6).
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To explicitly see how the transmittances of the beam
splitters affect on the quadratures of the ancillary non-
Gaussian state, we scale the strength of cubic nonlinearity
y to (Ry/R,T»)*?y. The output p quadrature (A7b) is then
expressed as

All 1

—_ a 82
pO - \/T]{(p0+3yx0)

(A8)

The second term represents the nonlinear noise determined by
the non-Gaussian measurement. We can see that the ancilla
is effectively squeezed by the squeezing factor /R|T2/R>,
which can be fully controlled by choosing transmittance of
the second beam splitter. While universal squeezing operation
in actual experiments [14,18,19] adds non-negligible noise
to the input state because of finite squeezing in its resource
state, the effective squeezing in the heterodyne measurement
does not require additional resource states, which helps in
the preparation of the approximate cubic state with high
purity.

APPENDIX B: NUMERICAL METHOD OF
APPROXIMATING PHOTON-NUMBER SUPERPOSITION
TO THE CUBIC STATE

In Sec. V, we considered the variance V(pniq) as a figure
of merit to approximate the cubic state with photon-number-
superposition states up to certain photon level and squeezing.
Intuitively, the approximation can be done by numerically
optimizing all of the coefficients of a superposition state and
the squeezing level, but it often leads to locally optimum
solutions, especially when increasing the upper limit of photon
numbers. Here we reduce the problem into optimization with
two variables, regardless of the size of the Hilbert space. With
each set of the two variables, an optimized superposition state
can be derived as an eigenstate of the minimum eigenvalue
of a certain positive-semidefinite operator. By numerically
creating a minimum-search map with the two variables, we
can make sure that the solution is almost certainly the true
optimum one. The method is a variation of the classical
variance-minimization problem [43].

Suppose Hy is a (N + 1)-dimensional Hilbert space up to
the N-photon level, and |y) is a state in H y. Our purpose is to
find a set of the optimum state |¢/) and the optimum parameter
A’ that minimizes the variance of the nonlinear quadrature
$(X) = A'p — 3(£/1)%. This problem can be written as

min  V(|¥),1), (Bla)
) € Hy
MVelR
V()2 = (IR — GNP ), (B1b)

where ($(1")) is the expectation value (| J(1)| ).
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FIG. 6. Minimum-searchmap: (@) N =1,(b) N =3,(c) N =5,
(d) N = 9. The values are normalized by shot noise level and shown
in dB scale.

To make this problem digestible, we alternatively consider
another minimization problem. Let d be a real number. We
then replace the expectation value in Eq. (B1b) with 4 and set
a new evaluation function,

Z() A d) = (PIIA) — dP|y).

Next we introduce another evaluation function W(d) defined
as minimum of Z(|vy),A",d) with respect to |y) € Hy and
A" € R. This can be expressed as

(B2)

W)= min Z(¥), N, d). (B3)

[¥)

2V elR
Suppose W (d) is minimum when d = d*. In addition, suppose
Z(|y),A ,d*) is minimum when |¢) = |[¢*) and A =A™,
Then we can say that the set (|/*),A™*) is the true optimum
set that minimizes V (|y),A"). This is verified as follows. Let
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($(1"))* be the expectation value (¥ *|$(1")|¢¥*). Then
Z(|y*),A",d) < WEIAR)))
< Z(Y™), 2" (3G

and consequently ((§(A™))* — d*)*> < 0, which means d* =
($(A*))*. Therefore, for any |¢¥) € Hy, any A’ € R, and
the corresponding expectation value ($(1")) = (¥ |J(A)|¥),
it holds that

V(y*).2") = W(d")
< W) < Z(Y) A (50) = V(). 1),

which means V(|¥*),A*) is minimum. As a result, the
problem can be solved by searching for a state that minimizes
Z(|¢),A',d) with every A’ and d.

The point is that Z(|¥),A,d) is a quadratic form, and
therefore each optimum state is determined as an eigenstate
of the minimum eigenvalue of [$(1) — d]? represented by the
limited Hilbert space. In the case that we look for the optimum
state up to the N-photon level, the matrix representation of
[$(\) — d]? reads

(B4)

(B5)

N
YO d)= ) Y@ d)m)nl, (B6)

m,n=0

Yo\ d) = (m|[30) — dF|n), (B7)

and the optimum state in terms of (1/,d) is found as the
eigenstate of the minimum eigenvalue of the matrix Y (1',d),
which can be deterministically obtained by numerical calcu-
lation. This implies that the problem is now broken down
into a two-variable optimization problem. We can create a
minimum-search map minyyen, Z(|Y),A',d) with respect to
A" and d, which makes it easy to look for the true optimum
solution.

Figure 6 shows some examples of the map used to derive
the optimized superposition states in Fig. 5. We can see that
the number of local minima increases as the upper limit of
photon numbers becomes larger. By choosing suitable ranges
and resolutions of (A',d), we almost certainly find the true
minimum and, consequently, the true optimized state.
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