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We show explicitly how to realize an arbitrary linear unitary Bogoliubov (LUBO) transformation on a
multimode quantum state through homodyne-based one-way quantum computation. Any LUBO transformation
can be approximated by means of a fixed, finite-sized, sufficiently squeezed Gaussian cluster state that allows
for the implementation of beam splitters (in form of three-mode connection gates) and general one-mode LUBO
transformations. In particular, we demonstrate that a linear four-mode cluster state is a sufficient resource for an
arbitrary one-mode LUBO transformation. Arbitrary-input quantum states including non-Gaussian states could
be efficiently attached to the cluster through quantum teleportation.
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I. INTRODUCTION

The cluster model of quantum computation, or one-way
quantum computation [1,2], is an alternative approach to the
standard circuit model for quantum computing [3]. In the
cluster model, a special type of entangled state is used as a
resource for cluster computation. These resource states are
known as cluster states. A cluster computation is basically
a sequence of elementary, “half” teleportations [4,5] where
quantum information is not only transmitted through a cluster
state but also manipulated in any desired way depending
on the specific choice of the measurement bases at each
teleportation step. As opposed to standard-teleportation-based
schemes, the measurements in a cluster computation are all
local (subsequently performed on the individual nodes of the
cluster). In order to achieve universal quantum computation
using a fixed cluster state, active feedforward is needed,
where the measurement bases of subsequent measurements
have to be adjusted according to the outcomes of the earlier
measurements.

Cluster states and cluster computation were originally
proposed for discrete variables (DVs), namely qubits [1,2].
More recently, the cluster-state model was then extended to the
regime of continuous variables (CVs) [6,7], in which universal
cluster states can be approximated by experimentally highly
accessible Gaussian multimode squeezed states of sufficiently
many quantized optical modes (qumodes). For both DVs and
CVs, the cluster-state model is known to be equivalent to the
circuit model in the sense that any finite-dimensional (qubits)
as well as any infinite-dimensional (qumodes) operation can
be efficiently realized in a cluster-based scheme.

For DVs, an arbitrary single-qubit rotation (unitary) can
be exactly decomposed into three elementary single-qubit
rotations [3]. Therefore, even though the whole set of single-
qubit unitaries is continuous, concatenating three elemen-
tary (but continuous) single-qubit rotations in a three-step
cluster computation using a linear four-qubit cluster state is
sufficient to achieve universality in the single-qubit space.
Such elementary rotations by general angles would include
so-called non-Clifford gates; in this case, feedforward is
required during the cluster computation. As a result, provided

that the continuous, elementary single-qubit rotations can
be implemented in an error-resistant fashion, any multiqubit
unitary can be performed by connecting sufficiently many
linear four-qubit clusters by vertical wires through which a
fixed two-qubit entangling gate can be applied when needed.

In the case of CV, there are various subtleties, even in
theory. First, independent of the cluster model, an arbitrary
single-qumode transformation (represented by a Hamiltonian
that is an arbitrary polynomial of the qumode’s position
and momentum variables) must include (arbitrary) higher
order, nonlinear (non-Gaussian) transformations.1 For this
purpose, full universality has been shown to be asymptotically
approachable through infinite (but efficient) concatenation
of a finite set of elementary unitaries, each lying in the
neighborhood of the identity and including at least one
nonlinear gate [8].

Second, when utilizing cluster states, in order to satisfy
the notion of full universality for CVs, sufficiently large
(potentially infinite) squeezing of the Gaussian cluster state
is required, as otherwise the asymptotic concatenation of
elementary-gate teleportations would accumulate an infinite
amount of finite-squeezing-induced errors. The second issue
here, the issue of finite squeezing, is then related with the
first issue, the issue of full universality for CVs based on
infinite, elementary-gate concatenation. Although it has been
proven that the squeezing per mode needed to create a universal
Gaussian cluster state of fixed accuracy does not depend
on the size of the cluster state (and hence on the size of
the computation it is used for) [9], the errors in a cluster
computation using a fixed-accuracy cluster would nonetheless
grow arbitrarily with the length of the computation (and the
size of the cluster).

In this article, we focus on a restricted class of cluster
computations, namely those realizing linear, Gaussian trans-
formations corresponding to quadratic Hamiltonians. More
generally, these transformations are referred to as linear unitary
Bogoliubov (LUBO) transformations. In this case, it is well

1We use “mode” and “qumode” interchangeably.
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known that arbitrary quadratic Hamiltonians can be exactly and
finitely decomposed into elementary quantum optical elements
such as single-mode squeezers and beam splitters [10,11]. A
perfect simulation of the total Hamiltonian no longer requires
an infinite concatenation of these elementary optical gates;
each elementary gate no longer has to be weak and may even
be far from the identity. These properties greatly simplify
the theoretical analysis and the experimental implementation
of LUBO transformations through cluster computation over
CVs. As the Gaussian transformations play the roles of the
Clifford gates for CVs, the measurements in a Gaussian
cluster computation may all be done in parallel (Gaussian
parallelism); moreover, local homodyne detections on the
individual qumodes of the cluster are sufficient to achieve
any multimode LUBO transformation [6].

Despite these known simplifications and possibly because
of the known impossibility of full universality in the case
of Gaussian cluster computations, so far there has been no
explicit derivation of universal cluster states for Gaussian or
Clifford computations that would include an explicit choice of
homodyne measurements on a specifically shaped finite-sized
cluster state realizing operations far from the identity. It has
only been shown how a single-mode squeezing transformation
can be approximately applied to an arbitrary input state
attached to a perfect (infinitely squeezed), linear four-mode
cluster state [12].

Here, we give several such explicit derivations. In particular,
we show that an arbitrary one-mode LUBO transformation
can be perfectly achieved through an ideal four-mode linear
cluster state. Further, we show that an arbitrary input state
can be coupled to the cluster state using standard quantum
teleportation [13,14]. Finally, we present a simple idea that
enables one to implement an arbitrary multimode Gaussian
transformation. Even though we do not give a provably
optimal, multimode solution with regard to the size of the
cluster, in our proposed scheme, the dependence of the cluster
size is quadratic on the number of the input modes, and this
order coincides with the minimum order of elements required
for general multimode Gaussian transformations.

As a consequence of our results, the efficient experimental
implementation of any multimode LUBO transformation on
any optical multimode quantum state (especially including
non-Gaussian input states) becomes possible using the ex-
isting optical schemes for efficient, deterministic creation
of Gaussian cluster states [15–19]. In other words, the
entire regime of multimode linear optical transformations
becomes, in principle, accessible through one fixed, offline,
squeezed, finite-sized cluster state and homodyne detections
on it.

The plan of the article is as follows. First, in Sec. II, we give
a brief introduction into cluster computation over CV including
the elementary teleportation circuits for gate teleportation. In
Sec. III, we explicitly derive the linear four-mode cluster state
and the homodyne measurement steps that allow for a realiza-
tion of arbitrary one-mode LUBO transformations. In order to
attach arbitrary quantum states to the cluster in an efficient
way, we show in Sec. IV how one may employ standard
quantum teleportation for this purpose. An explicit scheme for
a one-mode LUBO transformation using teleportation-based
input-cluster coupling is discussed in Sec. V. Finally, before

FIG. 1. Elementary one-mode, one-way QC gate: |ψin〉 is the
input state, |p = 0〉 is a momentum eigenstate with eigenvalue zero,
p̂′ is the measurement variable, and X̂ is a correction displacement
operator.

concluding in Sec. VII, we examine the most general case of
universal multimode LUBO transformations in Sec. VI.

II. ELEMENTARY-GATE TELEPORTATIONS

Before going into detail, we briefly review the basic
concepts of CV cluster computation in quantum optics. We use
the convention h̄ = 1/2 such that [x̂, p̂] = i/2 for â = x̂ + ip̂

and [â, â†] = 1, where the real and imaginary parts of an
optical qumode’s annihilation operator are as usual expressed
by the position and momentum operators x̂ and p̂, respectively.

The building block of a one-mode cluster computation is
shown in Fig. 1. It can be considered as a generalized (“half”)
teleportation [4,5]. First, the input state |ψin〉 and an ancilla
squeezed vacuum state |p = 0〉 are coupled through a CV
quantum nondemolition (QND) interaction. A QND coupling
between modes j and k is described by the gate exp(2ix̂j x̂k),
which is depicted in Fig. 1 as a line that connects the two
horizontal wires for each qumode. Next, the input mode is
subject to a local measurement with a measurement basis
{Ô†|p〉} (that is, the measured observable is p̂′ = Ô†p̂Ô),
where Ô is a function of only x̂; that is, Ô = exp[if (x̂)].
After the feedforward operation X̂j (s) = exp(−2isp̂j ), which
is a position displacement in phase space by the value
of the measurement outcome s, the resulting output state
corresponds to |ψ ′〉 = F̂ Ô|ψin〉, where F̂ = exp[i(π/2)â†â]
is the Fourier transform operator. In the realistic case, |p = 0〉
is approximated by a single-mode finitely squeezed state. As
a result, some unwanted excess noise is introduced at each
teleportation step of the computation, depending on the initial
squeezing level.

Arbitrary one-mode transformations can then be performed
by concatenating sufficiently many elementary teleportation
steps. Similarly, when several modes propagate through a two-
dimensional (2D) cluster state (such as a 2D lattice), QND
gates can be applied to any two modes during the cluster
computation such that universal multimode transformations
become possible [6].

Figure 2(a) shows an example of a cascade of teleportation
steps for one-mode manipulations. Every single step i will
apply the operation F̂ Ôi . Hence, the general output state of an
n-time cascaded one-mode circuit corresponds to

F̂ Ôn(x̂) · · · F̂ Ô3(x̂)F̂ Ô2(x̂)F̂ Ô1(x̂)|ψin〉
= F̂ · · · F̂ Ôn(·) · · · Ô3(−x̂)Ô2(p̂)Ô1(x̂)|ψin〉. (1)

As one can see, elementary unitary operations, either diagonal
in x̂ or in p̂, are alternately performed on the input state.

One important thing here is that the QND coupling
exp(2ix̂j x̂k) is an element of the Clifford group C2, which
is a group that consists of the normalizers of the Heisenberg-
Weyl (HW) group C1; that is, C2 = {Û |ÛC1Û

† = C1}. The
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FIG. 2. (a) One-step, elementary one-way QC gate (enclosed by
a dashed line) and its cascade (the whole); (b) an equivalent circuit to
(a). The circuit enclosed by a dashed line shows a four-mode linear
cluster state. Parts (c) and (d) are graph representations of (a) and (b),
respectively. Each ball represents a single mode, and each thick line
represents a QND connection. A dashed box in (d) is a four-mode
linear cluster state that corresponds to that in (b).

HW group C1 is the group of phase-space displacements,
an element of which is generally written in the form
exp[2i

∑
j (ηj x̂j − ξj p̂j ) + iφ] where ηj and ξj are arbitrary

real values that represent the size of the displacements in phase
space for mode j , and φ is a global phase. The Clifford group
C2 is a group whose generators are polynomials up to quadratic
order in position x̂j and momentum p̂j ; that is, the elements
take on the general form exp[i

∑
j,k(αj,kx̂j x̂k + βj,kx̂j p̂k +

γj,kp̂j p̂k) + i
∑

j (δj x̂j + εj p̂j ) + iφ], where αj,k , βj,k , γj,k ,
δj , and εj are arbitrary real values.

As a consequence of the discussion in the preceding
paragraph, all the QND couplings can be applied prior to an
actual quantum computation, while the feedforward operations
remain simple displacements in phase space [Fig. 2(b)]. The
resulting multimode entangled state [see the dashed box in
Fig. 2(b)], in which several single-mode squeezed states are
coupled through pairwise QND interactions, is the resource
cluster state.

In the following, a cluster state built from “blank” squeezed
vacuum modes (i.e., without an input quantum state attached
to it) are referred to as an “ancilla cluster state.” Once such a
resource state has been prepared, the individual displacements
of every teleportation step can then all be postponed until
the end of the cluster computation, as illustrated in Fig. 2(b).
However, it does make a difference whether the desired
operation is Ôj ∈ C2 or Ôj /∈ C2. In the latter case, when
Ôj /∈ C2 for some j (corresponding to cubic or higher order
gates), the measurement bases of the succeeding [(j + 1)th,
(j + 2)th, . . .] teleportation steps would depend on the out-
come of measurement j . More conveniently, when Ôj ∈ C2

for all j , none of the chosen measurement bases depend on any
measurement outcomes such that all the measurements can be
performed in any order.

Cluster states are often represented using graphs [20], as,
for example, the four-mode linear chain in the dashed box of

Fig. 2(d), where each node denotes an ancilla single-mode
squeezed state and each link represents a QND coupling.
Using such graphs, we can easily distinguish different types
of entangled cluster states. A perfect cluster state can be
approached in the limit of infinite ancilla squeezing with the
resulting quantum correlations for all j [15],

p̂j −
∑

k∈N(j )

x̂k → 0, (2)

where N (j ) denotes the set of all nearest neighbors to the j th
mode. In the limit of infinite squeezing, these quantum corre-
lations among the qumodes’ quadratures uniquely determine
the corresponding graph state. The correlations are analogous
to the generators of the stabilizer group for a qubit graph
state [15]. The only difference here is that for CV, it is more
convenient to express the stabilizer conditions in terms of the
Lie algebra, that is, the generators of the HW Lie group, for
which the stabilizers become nullifiers [9].

In the following, we restrict ourselves to unitary Gaussian
transformations on n modes, which form a Clifford group
C2 = Cl(n). The Clifford group is a semidirect product of
the symplectic group Sp(2n,R) and the HW group C1 =
HW(n), Cl(n) = Sp(2n,R) � HW(n). The group HW(n) is
a homogeneous space under the adjoint action of Cl(n),
and one can construct a group representation of Cl(n) on
the vector space of its Lie algebra hw(n). Here, instead of
using this particular representation, we prefer to consider a
representation isomorphic to the former one but that reveals
a more clear physical meaning: the linear transformation of
position x̂ and momentum p̂ in the Heisenberg picture,(

x̂′

p̂′
)

= Û
†
G(n)

(
x̂
p̂

)
ÛG(n) =

(
A B

C D

) (
x̂
p̂

)
+

(
e
f

)
, (3)

where x̂ (x̂′) and p̂ ( p̂′) denote the vectors of position and mo-
mentum operators x̂ = (x̂1, . . . , x̂n)T and p̂ = (p̂1, . . . , p̂n)T

at the input (output), respectively. The 2n × 2n matrix MG(n) =
(A B
C D) is a faithful representation of the symplectic group

Sp(2n,R) with 2n2 + n degrees of freedom. Here, the matrix
MG(n) is divided into four n × n matrices A, B, C, and D.
The column vectors e, f ∈ Rn represent displacements in
phase space. The isotropy subgroup of this representation is a
global phase exp(iφ), which we can ignore. The displacements
are omitted as well, as they can be trivially applied at any
time during a cluster computation [6,12]. Note that Eq. (3)
corresponds to an n-mode LUBO transformation, usually
expressed in terms of annihilation and creation operators,
âk = ∑

l Ãkl âl + B̃kl â
†
l + γk , with the γk being n complex

parameters and the n × n matrices Ã and B̃ chosen such that
the bosonic commutators are preserved.

III. UNIVERSAL ONE-MODE LUBO TRANSFORMATION

Let us now start with the explicit realization of an arbitrary
one-mode Gaussian transformation MG(1) = (a b

c d), where
ad − bc = 1. In cluster computation, the elementary gate for
one-mode LUBO or Gaussian transformations is the quadratic
phase gate ÔG(x̂) = exp(iκx̂2) [21], where κ takes on arbitrary
real values, together with the Fourier transform. Therefore,
our strategy is to search for decompositions of a given LUBO
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transformation into quadratic x and p phase gates. In case of
the x phase gate, the corresponding observable to be measured
is e−iκx̂2

p̂eiκx̂2 = p̂ + κx̂ = g(x̂ sin θ + p̂ cos θ ), where g =√
1 + κ2 and θ = arctan κ . In an optical implementation, any

such linear combination of x̂ and p̂ can be measured by means
of homodyne detection with a suitable choice of the local
oscillator phase depending on the angle θ .

The 2 × 2 matrix representation of ÔG(x̂) is O(κ) = (1 0
κ 1),

and that of the Fourier transform F̂ is F = (0 −1
1 0 ) = R(π/2)

where R(θ ) = (cos θ − sin θ

sin θ cos θ ) is a phase-space rotation. Thus, the
total transformation of a one-step, one-mode teleportation gate
becomes M(κ) = FO(κ) = (−κ −1

1 0 ).
Now, first we prove the following lemma. This lemma will

also be useful later on, so we describe it in a somewhat general
form.

Lemma. Let us combine those one-mode Clifford group
(C2) operations that are performed before the final elementary
gate M(κn) into Mn−1(κ1, . . . , κn−1) = (an−1 bn−1

cn−1 dn−1
) ∈ Sp(2,R)

where (κ1, . . . , κn−1) are the free parameters in the choice
of the measurement bases. Then, together with the final step
M(κn) = FO(κn), an arbitrary one-mode C2 operation is
accomplished if and only if (iff) (an−1, bn−1) ∈ R2 covers the
whole range of R2 \ {0, 0}. This means that a certain property
of the whole circuit without the last step, Mn−1, determines
whether the circuit as a whole is universal.

Proof. The matrix representation after the final step can be
written as

Mn(κ1, . . . , κn) ≡ M(κn)Mn−1(κ1, . . . , κn−1)

=
(−cn−1 − κnan−1 −dn−1 − κnbn−1

an−1 bn−1

)

≡
(

an bn

cn dn

)
. (4)

Proof of necessity. If (an−1, bn−1) does not coverR2 \ {0, 0},
then (cn, dn) cannot take on arbitrary values in R2 \ {0, 0}, and
thus Mn(κ1, . . . , κn) is not universal in Sp(2,R).

Proof of sufficiency. In the case of cn = an−1 �= 0, an can
take on an arbitrary real value that is determined by κn. Now
an, cn = an−1 �= 0, and dn = bn−1 take on arbitrary values,
and bn is automatically determined from the condition andn −
bncn = 1, as cn �= 0. In the case when cn = an−1 = 0, we have
dn = bn−1 �= 0, and Mn(κ1, . . . , κn) has the form (1/dn bn

0 dn
);

bn = −dn−1 − κnbn−1 takes on an arbitrary value determined
by κn, as bn−1 �= 0. Q.E.D.

Using this lemma, we can show that the minimum number
of elementary steps that is required for universal one-mode
Gaussian transformations is four. Because there are three
degrees of freedom (DOF) for Sp(2,R), one might expect
that three steps are sufficient. However, some measure-zero
set of operations in Sp(2,R) cannot be achieved with only
three steps. This is expressed by the following theorem.

Theorem. In order to realize an arbitrary one-mode LUBO
transformation through one-way computation over CV, four
elementary teleportation steps, involving quadratic phase gates
and Fourier transforms, are necessary and sufficient.

Proof. The matrix representation for two steps is
M(κ2)M(κ1) = (κ2κ1 − 1 κ2

−κ1 −1) ≡ (a2 b2
c2 d2

); thus when b2 = 0, the
parameter a2 cannot take on a value other than −1. As a con-
sequence, M(κ3)M(κ2)M(κ1) = (−κ3κ2κ1 + κ3 + κ1 −κ3κ2 + 1

κ2κ1 − 1 κ2
) ≡

(a3 b3
c3 d3

) cannot have d3 = 0 and b3 �= 1; hence, three elemen-
tary steps M(κ3)M(κ2)M(κ1) are not universal for Sp(2,R).

On the other hand, (a3, b3) = (b3κ1 + κ3,−κ3κ2 + 1) does
cover the whole range R2 \ {0, 0}, as follows. The parameter
b3 takes on an arbitrary real value independent of κ1. In the
case of b3 �= 0, a3 can then take on an arbitrary real value that
is determined by κ1. In the case of b3 = 0, κ3 = 1/κ2 takes
on an arbitrary real value different from zero, and so does
a3. As a result, using the previous lemma, four elementary
steps M(κ4)M(κ3)M(κ2)M(κ1) are (necessary and) sufficient
for universal one-mode Gaussian operations. Q.E.D.

We complete this discussion by presenting the explicit
choice of parameters κ1, . . . , κ4. The total matrix for four steps
is

M(κ4)M(κ3)M(κ2)M(κ1)

=
(

κ4κ3κ2κ1 − κ4κ3 − κ2κ1 − κ4κ1 + 1 κ4κ3κ2 − κ4 − κ2

−κ3κ2κ1 + κ3 + κ1 −κ3κ2 + 1

)
.

(5)

An arbitrary one-mode Gaussian operation represented
by MG(1) = (a b

c d) ∈ Sp(2,R) can be decomposed into
M(κ4)M(κ3)M(κ2)M(κ1) as follows:

κ2 = 1 − d

κ3
, κ3 = c − dκ1, κ4 = 1 − a + bκ1

κ3
, (6)

where κ1 is a free parameter that should be typically chosen
such that κ3 �= 0, unless the numerators of κ2 and κ4 in the
equations are zero, for which κ3 may become zero. One
simple example is the identity operation MG(1) = (1 0

0 1), which
corresponds to κ1 = · · · = κ4 = 0.

As those operations that are not achievable through a
three-step computation are only a small subset of the whole
set of Gaussian operations, one might consider approximations
infinitesimally close to them. However, in the realistic case,
this is not a good strategy, because the squeezing of the ancilla
cluster states will be finite. In this case, the finite-squeezing-
induced excess noise grows arbitrarily big for three-step cir-
cuits that aim at sufficiently closely approximating otherwise
unachievable operations. In the four-step case, however, such
large excess noises are avoided, and furthermore, the extra
degree of freedom can be exploited to minimize the excess
noise. The detailed analysis will be presented elsewhere [22].

IV. INPUT COUPLING THROUGH TELEPORTATION

For Clifford one-mode, one-way quantum computation, it
is straightforward to apply the results of the preceding section
on universal one-mode LUBO transformations directly to the
most general scenario where an arbitrary input quantum state
is attached to the ancilla cluster state through QND coupling.
In this general case, the input state may have been already
processed and may correspond to the output of an earlier
quantum computation. A crucial question then is how to
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achieve this input coupling between a fragile input quantum
state and the ancilla cluster state in an efficient and practical
way. In this section, we address this issue.

Note that there is an essential difference between the QND
couplings for the initial ancilla squeezed states and those that
couple an input state to the ancilla state. Arbitrary ancilla
cluster (or graph) states can be built through linear optics
using beam splitters and offline single-mode squeezed states,
as has been shown theoretically [15] and also demonstrated for
some examples experimentally [17]. Hence, as opposed to the
actual input-cluster coupling, the QND couplings for cluster
generation can be effectively replaced by beam splitters. Of
course, there are situations when the input state may not
be coupled to the cluster from the outside. In principle, an
arbitrary multimode state can be prepared as a subset of modes
from a larger cluster state, and, in this case, there is no need
to prepare an independent input state before the cluster-state
generation. One may prepare any desired state within the
cluster and then proceed with the quantum computation.

Such a strategy, however, can be rather inefficient, espe-
cially in a one-way computation with Gaussian cluster states.2

Furthermore, there might be situations in which the input
coupling is necessary, for instance, when an unknown state
has been transmitted through a quantum channel and is to be
further processed through cluster computation.

Provided that efficient QND couplings are available, we
may just prepare the ancilla cluster state offline and attach
an input state to the cluster through QND coupling. However,
alternatively, we may also employ a nonlocal measurement for
this input coupling. A so-called Bell measurement, which is the
two-mode measurement used in quantum teleportation [14], is
the prime example for such a nonlocal measurement. In the
following, we discuss this type of coupling for arbitrary input
states through quantum teleportation. In an optical realization,
an important advantage is that the Bell measurement can be
easily implemented with a beam splitter and two homodyne
detections [23].

Figure 3 shows a typical diagram of the input coupling, in
which a two-mode input state is attached to the cluster through
Bell measurements on the input modes together with suitable
“port” modes from the cluster state. We discuss only this
situation, though there are many other possible configurations
that might complicate the problem. Quantum teleportation
with CV uses an Einstein-Podolsky-Rosen (EPR) type of state
as a resource. The key point for our proposal is that a two-mode
cluster state is an EPR state, up to a local Fourier transform.
Thus, the end nodes of a cluster state can be considered as
an EPR pair, one half of which is connected to the rest of
the cluster state through QND interactions. By performing a
Bell measurement on a single-mode input state and a cluster
end node (the unconnected half of the EPR state), the input
state will be teleported to the connected side of the EPR pair,

2For example, consider the case when a coherent state is required
as an input state. Since ancilla cluster states are made of squeezed
vacuum states, in order to prepare a coherent state within the cluster, a
reverse squeezing operation is required. The required squeezing level
of this operation would become infinite in the ideal limit with cluster
states built from infinitely squeezed states.

FIG. 3. Typical diagram for input coupling through quantum
teleportation. The input state is teleported into the cluster state by
Bell measurements on the input modes and the end nodes of the
cluster state.

located at the edge of the cluster state. In the case that the input
state is an n-mode (entangled) state, n independent quantum
teleportations using n cluster end nodes would couple the input
to the cluster, as depicted in Fig. 3.

We describe now the usual quantum teleportation protocol
for teleporting an unknown input state into a two-mode ancilla
cluster state (an EPR state). The quantum correlations of the
two-mode ancilla cluster state are x̂2 − p̂1 → 0 and x̂1 −
p̂2 → 0. We choose the linear beam-splitter transformation
for the Bell measurement as ( â′

0
â′

1
) = B0,1( â0

â1
) = 1√

2
(1 i

i 1)(
â0
â1

),
where subscript 0 denotes the input mode and the primes
correspond the the output modes of the beam splitter. The
input-output relations for this beam splitter are

x̂ ′
0 = (x̂0 − p̂1)/

√
2, x̂ ′

1 = (x̂1 − p̂0)/
√

2,
(7)

p̂′
0 = (p̂0 + x̂1)/

√
2, p̂′

1 = (p̂1 + x̂0)/
√

2.

Measurement of x̂ ′
0 and x̂ ′

1 is equivalent to a Bell measurement
and leads to the standard quantum teleportation without any
extra manipulation of the input state.

However, by modifying the nonlocal measurement basis
compared to the Bell basis, this teleportation does not only
couple an input state to the cluster but also manipulates the in-
put state correspondingly. With the beam-splitter coupling and
subsequent homodyne measurements, the possible operations
are Gaussian, as we see later. The phases of the homodyne
detections are expressed by θ0 and θ1; that is, the observables
x̂ ′

0 cos θ0 + p̂′
0 sin θ0 and x̂ ′

1 cos θ1 + p̂′
1 sin θ1 are measured.

The resulting teleportation is associated with the following
transformation:(

x̂ ′
p̂′

)
=

( cos θ+
cos θ−

sin θ−+sin θ+
cos θ−

sin θ−−sin θ+
cos θ−

cos θ+
cos θ−

) (
x̂

p̂

)

≡ Mtel(θ+, θ−)

(
x̂

p̂

)
, (8)

where θ± = θ0 ± θ1. The standard teleportation (identity
transfer) corresponds to the case θ0 = θ1 = 0. In the case
θ− = π/2 + nπ , n ∈ Z, the teleportation is not successful,
because one quadrature of the input state is perfectly measured
and the information of the orthogonal quadrature is lost;
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correspondingly, the elements of the matrix Mtel(θ+, θ−) go
to infinity. In the following, we assume cos θ− > 0. For
the case of cos θ− < 0, we can redefine θ ′

+ = θ+ + π and
θ ′
− = θ− + π , which results in identical transformations, that

is, Mtel(θ+, θ−) = Mtel(θ ′
+, θ ′

−) and cos θ ′
− > 0.

This seemingly complicated transformation can be intu-
itively understood by considering the following two cases
separately. On one hand, in the case that the two local
measurement bases θ0 and θ1 are rotated in the same direction
and by the same amount, that is, θ+ �= 0 and θ− = 0, we obtain
a phase space rotation,

Mtel(θ+, 0) =
(

cos θ+ sin θ+
− sin θ+ cos θ+

)
= R(−θ+). (9)

On the other hand, in the case that the two local measurement
bases θ0 and θ1 are rotated in opposite directions by the same
amount, that is, θ+ = 0 and θ− �= 0, squeezing will occur along
the 45◦ direction,

Mtel(0, θ−) =
( 1

cos θ−
sin θ−
cos θ−

sin θ−
cos θ−

1
cos θ−

)

= 1

2

(
1 −1

1 1

)(
1+sin θ−

cos θ−
0

0 1−sin θ−
cos θ−

) (
1 1

−1 1

)

= R(π/4)S(r(θ−))R(−π/4)

=
(

cosh r(θ−) sinh r(θ−)

sinh r(θ−) cosh r(θ−)

)
, (10)

where S(r) = (exp(r) 0
0 exp(−r)) describes a squeezing operation,

with r > 0 corresponding to p squeezing and r < 0 corre-
sponding to x squeezing. The squeezing parameter r(θ−) is
determined by tanh r(θ−) = sin θ−. In the case of general θ+
and θ−, the resulting operation is a combination of these two
cases:

Mtel(θ+, θ−) = Mtel(θ+/2, 0)Mtel(0, θ−)Mtel(θ+/2, 0)

= R(−θ+/2 + π/4)S(r(θ−))R(−θ+/2 − π/4).

(11)

This is a 45◦-tilted squeezing operation sandwiched by
rotations at an angle of θ+/2. In the next section, we use this
result to describe a general one-mode LUBO transformation
with teleportation-based input coupling.

V. ONE-MODE LUBO TRANSFORMATION WITH
TELEPORTATION-BASED COUPLING

In the case that the relative phase at the beam splitter (for
teleportation) may be changed arbitrarily, the teleportation
protocol alone is sufficient to realize arbitrary one-mode
Gaussian operations. We briefly explain this approach, which
partly violates the rules of one-way cluster protocols, as the
state manipulation depends on the choice of nonlocal mea-
surement bases (projections onto which require corresponding
adjustments of the beam-splitter coupling for teleportation).

It is known that an arbitrary matrix in Sp(2,R) can be
decomposed as [11]:

MG(1) = R(φ1)S(ξ )R(φ2). (12)

FIG. 4. (a) Input coupling scheme through quantum teleportation
(dashed box) followed by two elementary gates, allowing for arbitrary
one-mode Gaussian operations, and (b) an equivalent circuit to (a).
The circuit enclosed by the dashed box in (b) corresponds to a four-
mode linear cluster state. Measurements and feedforwards can all be
put at the end of the circuit.

The corresponding LUBO transformation of the annihila-
tion operator â is â′ = µâ + νâ†, where µ = exp[−i(φ1 +
φ2)] cosh ξ and ν = exp[−i(φ1 − φ2)] sinh ξ . Now the 2 × 2
matrix representation of the generalized teleportation with
an extra phase rotation beforehand is Mtel(θ+, θ−)R(θin) =
R(−θ+/2 + π/4)S(r(θ−))R(−θ+/2 − π/4 + θin). As a result,
an arbitrary one-mode Gaussian operation can be achieved
with the appropriate choice of θ+, θ−, and θin.

For the more interesting case when we stick to the rules
of cluster computation (i.e., we consider only the DOF of
the local measurement bases), the relative phase at the beam
splitter must be fixed, and so an additional two-step quadratic
phase gate followed by Fourier transforms is needed for an
arbitrary one-mode Gaussian operation. In other words, when
we replace the QND coupling between the input state and the
cluster state (Fig. 2) by a beam-splitter interaction (Fig. 4), the
required number of modes of the linear ancilla cluster state
remains four.

In order to show this, we use again the lemma proven
previously. We substitute θ− by r = arctanh sin θ−, omit the
subscript + in θ+, and rewrite Mtel(θ+, θ−) as M ′

tel(θ, r),

M ′
tel(θ, r) =

(
cos θ cosh r sin θ cosh r + sinh r

− sin θ cosh r + sinh r cos θ cosh r

)

≡
(

aT bT

cT dT

)
. (13)

Let us consider the loci of (aT , bT ) in the R2 plane. When
the squeezing parameter r is fixed, the locus of (aT , bT ) =
(cos θ cosh r, sin θ cosh r + sinh r) is a circle, the center of
which is (0, sinh r), intersecting the aT axis in points (±1, 0)
regardless of r (Fig. 5). Thus, the set of unreachable points of
(aT , bT ) in R2 \ (0, 0) is N = {(a, 0)|a �= ±1, 0}. As (aT , bT )
in M ′

tel(θ, r) does not cover the whole range of R2 \ (0, 0),
using the lemma, we conclude that an additional elementary
step, M(κ3), following M ′

tel(θ, r) is not enough for arbi-
trary Gaussian one-mode operations. However, teleportation-
based coupling followed by an additional elemen-
tary step, M(κ3)M ′

tel(θ, r) = (−cT − κ3aT −dT − κ3bT

aT bT
) ≡ (a3 b3

c3 d3
),
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FIG. 5. Loci of (aT , bT ) in Eq. (13). (a), (b), and (c) show the
cases of r > 0, r = 0, and r < 0, respectively.

does allow for arbitrary real values of (a3, b3) except (0, 0);
thus, using the lemma, yet another additional step M(κ4)
added to M(κ3)M ′

tel(θ, r) does the trick and achieves Gaussian
one-mode universality.

In order to prove this statement, we have to show that
(a3, b3) covers R2 \ (0, 0). For κ3 = 0, the unreachable points
of (a3, b3) in R2 \ (0, 0) are those of (−cT ,−dT ); the cor-
responding set is N ′ = {(0, b)|b �= ±1, 0}, using the same
arguments as for (aT , bT ). Therefore, by showing that an
arbitrary point (0, b) ∈ N ′ ⊂ R2 \ (0, 0) is attainable for some
nonzero κ3, the proof is complete. We show this as follows:
for a3 = 0, cos θ should be nonzero, and κ3 = −cT /aT =
(sin θ cosh r − sinh r)/ cos θ cosh r . Then b3 is calculated as
b3 = −1/ cos θ cosh r , which takes on an arbitrary real value
other than zero. Q.E.D.

Later, we give the explicit choice of the measurement
bases for the implementation of a particular Gaussian op-
eration expressed as MG(1) = (a b

c d) through teleportation-
based coupling followed by two additional elementary steps.
The two parameters θ+ and θ− (the measurement bases
of the teleportation coupling) are determined only from
the matrix elements c and d, so that c sin θ+ − d cos θ+ =
cos θ− − c sin θ−. Then the other parameters are given by
κ3 = −(d cos θ− + cos θ+)/(sin θ+ + sin θ−) and κ4 = −[a +
(cos θ+/ cos θ−)]/c. A solution of these equations is

cot θ1 = 1 − d

2c − (1 + d) cot θ0
, κ3 = c − (1 + d) cot θ0,

(14)

κ4 = 1 − a + b cot θ0

c − d cot θ0
,

where θ0 is a free parameter that can be utilized to minimize
excess noises, as described previously. Note that the problem
of zero denominators in the intermediate expressions of κ3 and
κ4 is avoided in the final forms for a suitable choice of θ0.

VI. UNIVERSAL MULTIMODE LUBO
TRANSFORMATIONS

In the remainder of this article, as a final issue, we
discuss arbitrary multimode Gaussian operations (general

multimode LUBO transformations). We present an explicit
way to implement any multimode Gaussian operation using a
finite-sized cluster state and homodyne measurements on it.

The one-way, two-mode entangling gate proposed previ-
ously [6] corresponds to a QND interaction with unit gain
(the same gate that is used to create the ancillary, unweighted
cluster/graph state). In order to transfer this gate onto a
two-mode input state, the state has to propagate through
a two-dimensional cluster state. Even though, in principle,
it is sufficient for achieving universality with CV (when
supplemented by arbitrary single-mode gates), the use of a
single fixed-gain, two-mode interaction gate for multimode
transformations is rather awkward, as arbitrary two-mode
beam splitter interactions have proven to be very powerful
for multimode linear optics [10].

Here, instead of a fixed-gain interaction, we propose another
type of interaction, referred to as a three-mode connection gate.
Its configuration is shown in Fig. 6(a) and 6(b). In this scheme,
one ancilla mode would function as a kind of controller of the
interaction gain.

In Fig. 6, modes in1 and in2 represent the input modes (in
an arbitrary, potentially entangled two-mode state), whereas
modes 3, a, and b are ancilla squeezed vacuum modes. Mode
3 plays the role of a controller of the interaction; modes a and b

are the end points for the propagation of quantum information
from mode sin1 and in2, respectively. As before, links between
cluster nodes represent QND couplings.

The measured variable at mode 3 is x̂ ′
3 = Ô†(p̂3)x̂3Ô(p̂3) =

x̂ + η3p̂, where Ô(p̂3) = e−iη3p̂
2
3 . The resulting interaction is

exp[iη3(x̂1 + x̂2)2]. On the other hand, the measurements on
modes in1 and in2 correspond to the quadratic phase gates
exp(iκ1x̂

2
1 ) and exp(iκ2x̂

2
2 ), respectively, followed by Fourier

transforms. Note that these three operators, exp[iη3(x̂1 +
x̂2)2], exp(iκ1x̂

2
1 ), and exp(iκ2x̂

2
2 ), all commute.

As a result, by combining these three measurements, an
arbitrary two-mode operation is achieved whose Lie algebra
is quadratic with regard to the position operator x̂; that

FIG. 6. (a) Three-mode connection gate. Mode in1 and mode in2
are the input modes, while modes a, b, and 3 are ancilla modes. The
input state may be an entangled state. Measurement results on modes
1 and 3 are added (electronically) and used to displace mode a, while
measurement results on modes 2 and 3 are added (electronically)
and used to displace mode b. (b) Graph representation of (a).
(c) Three-step, three-mode connection gate in graph representation. A
phase-free beam splitter can be implemented using this configuration.
Measurements and feedforwards are omitted in (c).
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is, Ô(x̂1, x̂2) = exp(c1x̂
2
1 + cI x̂1x̂2 + c2x̂

2
2 ). The subsequent

Fourier transform effectively swaps the roles of x̂ and p̂. Thus,
by cascading such three-mode connection gates, as illustrated
in Fig. 6(c), the two modes effectively interact subsequently
with alternating quadratures x̂ and p̂ for every single step.
Hence, an m-time cascaded interaction may be written
as

F̂2 · · · F̂2Ôm(·) · · · Ô2( p̂)Ô1(x̂), (15)

where F2 is a two-mode Fourier transform, and x̂ = (x̂1, x̂2),
p̂ = (p̂1, p̂2).

Note that any interaction can be suppressed by setting η3 =
0 such that interactions may be only applied whenever they are
needed for a fixed cluster state. The 4 × 4 matrix representation
of the connection gate is

⎛
⎜⎜⎝

x̂ ′
1

x̂ ′
2

p̂′
1

p̂′
2

⎞
⎟⎟⎠=

(
02 −12

12 02

)⎛
⎜⎜⎝

1 0 0 0
0 1 0 0

κ1−η3 −η3 1 0
−η3 κ2−η3 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

x̂1

x̂2

p̂1

p̂2

⎞
⎟⎟⎠ ,

(16)

where 02 is a 2 × 2 zero matrix and 12 is a 2 × 2 identity matrix;
F2 = (02 −12

12 02
) is the matrix representation of the two-mode

Fourier transform.
To complete the discussion on arbitrary Gaussian multi-

mode transformations, we use the well-known decomposition
of multimode Gaussian operations, usually referred to as
Bloch-Messiah reduction [11]. An arbitrary n-mode Gaussian
operation Ĝ, whose DOF are 2n2 + n, is decomposed into the
form Û ŜV̂ , where Û and V̂ correspond to passive linear-optics
circuits with n2 DOF coming from beam splitters (with some
fixed phase) and single-mode phase shifters; Ŝ represents
single-mode squeezers applied to each mode.

The phase shifters and squeezers are one-mode operations
that are realizable using at most four ancilla modes, as
discussed in detail previously. Thus, provided an explicit
implementation of a phase-free beam splitter with arbitrary
reflectivity R is given, we can conclude that any multimode
Gaussian operation is achievable with our specifically shaped,
finite-sized cluster (where our implementation may be subop-
timal). A decomposition of the linear-optics circuits Û and
V̂ into beam splitters and phase shifters requires at most
n(n − 1)/2 phase-free beam splitters and n(n + 1)/2 phase
shifters [10]. Thus, the number of ancilla modes required for
this implementation is quadratic in the number of input modes
n. It is worth noting that the number of DOF of Sp(2n,R) is
2n2 + n, corresponding to a minimum size of a cluster state
for universal multimode Gaussian operations also quadratic
with regard to n. Hence, our one-way scheme with a total
cluster state of size ∼ n2 (using a supply of four-mode linear
subclusters and the corresponding subclusters for three-mode
connection gates) would provide an efficient realization of
universal multimode LUBO transformations.

Finally, in order to establish the link between the three-
mode connection gates and phase-free beam splitters, let us

define a phase-free beam splitter with intensity reflectivity R,⎛
⎜⎝

x̂ ′
1

x̂ ′
2

p̂′
1

p̂′
2

⎞
⎟⎠ =

(
MR 02

02 MR

) ⎛
⎜⎝

x̂1

x̂2

p̂1

p̂2

⎞
⎟⎠ ,

(17)

MR =
( √

R
√

1 − R√
1 − R −√

R

)
.

Note that M2
R = 12. We have the following relation:(

MR 02

02 MR

)
=

[(
02 −12

12 02

)(
12 02

MR 12

)]3

≡ M3
I . (18)

The transformation MI is achieved using a three-mode
connection gate, choosing the three parameters κ1, κ2, and
η3 in the following way:

κ1 =
√

R − √
1 − R,

κ2 = −
√

R − √
1 − R, (19)

η3 = −√
1 − R.

Therefore, a phase-free beam splitter with an arbitrary reflec-
tivity 0 � R � 1 can be implemented through a three-step,
three-mode connection gate. This would require in total nine
ancilla modes.

VII. CONCLUSION

In conclusion, we have described an explicit implementa-
tion for arbitrary one-mode and multimode LUBO transfor-
mations (Gaussian operations) in the framework of one-way
computation over continuous variables using Gaussian cluster
states and homodyne measurements. We have shown that an
ancillary, linear, four-mode cluster state is a necessary and suf-
ficient resource for universal one-mode Gaussian operations.
We have also presented a strategy for multimode Gaussian
operations, where beam splitter interactions are used as the sole
multimode operation. Arbitrary (phase-free) beam splitters can
be realized in a measurement-based one-way scheme through
so-called three-mode connection gates consuming one ancilla
three-mode cluster per gate. Every beam splitter requires three
such three-mode connection gates, nine ancilla modes in total.

Most important, our scheme scales quadratic with the
number of input modes such that an ancilla cluster state of size
at most quadratic in the number of input modes is sufficient.
This scaling coincides with the scaling of the number of
elementary optical gates (phase shifters, beam splitters, and
squeezers) needed for a circuit implementation of general
LUBO transformations. We leave a possible optimization of
our multimode cluster-based scheme for future research.

Regarding actual experimental demonstrations of the re-
sults derived here, we discussed some simplifications for
coupling arbitrary input states to a given cluster state. Our
simplified scheme is based on standard quantum teleportation
instead of the more expensive QND coupling. Remarkably,
eventually the coupling QND gate may be replaced by just
a fixed beam splitter, as it is already possible through our
generalized teleportation scheme to manipulate and process
the input state to some extent.
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One big strength of our scheme is as follows. As how
to generate arbitrary cluster/graph states using linear optics
is well known, by employing the present scheme, one may
now perform a general multimode LUBO transformation on
an arbitrary multimode input state (including fragile non-
Gaussian states) in an efficient, solely measurement-based
fashion. All potentially inefficient, optical interactions (such
as online squeezing) would be done beforehand offline for the
resource cluster state. Although efficient multimode LUBO
transformations are now, in principle, accessible even for
non-Gaussian input states, in a realistic scheme, only an ap-
proximate, finitely squeezed ancilla cluster state could be used.
Therefore, the resulting LUBO transformations would become

imperfect, depending on the initial squeezing level. Apart from
utilizing new experimental schemes with further increasing
squeezing levels, one possibility to address the finite-squeezing
issue may be in form of some kind of error correction such as
postselection [6] or redundant encoding [15].
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