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Gain tuning and fidelity in continuous-variable quantum teleportation
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The fidelity of continuous-variable teleportation can be optimized by changing the gain in the modulation of
the output field. We discuss the gain dependence of fidelity for coherent, vacuum, and one-photon inputs and
propose optimal gain tuning strategies for corresponding input selections.
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I. INTRODUCTION II. QUANTUM STATE TELEPORTATION
WITH VARIABLE GAIN

Continuous-variable quantum telgporta}tion transfers_ un- Figure 1 shows the schematic sets of the quantum telepor-
known quantum states of a light field input from Alice 5i0y | sed in Ref{4]. Alice transmits an unknown quantum
(sendey to Bob (receivej using squeezed state entanglemenr,st(,mﬂlr//>A to Bob. Alice and Bob share Einstein-Podolsky-

as a resourcgl—4]. Since only finite squeezing is possible, Rosen(EPR beams in advance. The quantum state of the
the fidelity of this teleportation process is limited by non- epr peams reads

maximal entanglemenrB,5,6). However, it has been shown

in Ref.[6] that the output of a single pure state teleportation

always results in a pure state output conditioned by the clas- *

sical information sent from Alice to Bob. Therefore, it may | rE= Vl—QZZ a"[n)rIn)g ., (1)

be possible that Bob can use this classical information to n=o

improve the fidelity if some information on the selection of

possible input states is known. whereR is the mode used by Alice as a quantum reference in
In the continuous-variable quantum-teleportation experithe joint measurement ok and R [6], and B is the output

ment realized by Furusawet al. [4], the classical informa-  mode on Bob's side. The degree of entanglement is given by

tion is a complex field amplitud@ that is effectively added the parameter. The parameteq varies from 0 to 1, with

to the output field by a modulation process. The amplitude ofj=1 for maximal entanglement arg=0 for no entangle-

this modulation process can be modified by a gain factor. Irment(vacuum inR andB). Experimentallyq is determined

Ref. [4], the input state was a coherent state with an ampliby the squeezing achieved in the entangled modes. If the

tude much larger than 1, such that the optimal fidelity was

obtained at a gain of 1. However, Polkinghorne and Ralph

have pointed out that a lower gain can be useful for teleport- Measurement of

ing photon entanglemerfZ]. Such considerations demon- B=a- iy Output

strate that the optimal gain for the teleportation depends on - e field

the selection of possible input states. /
In the following, the dependence of fidelity on gain is \ / N

investigated for coherent states, for the vacuum state, and for D(g8)

a one-photon input. These results allow an optimization of A R B

fidelity for certain groups of input states, such as coherent /Bean\ /

states with constant amplitude and varying phase or qubits of Input splitter

zero or one photon. field OPA

FIG. 1. Schematic representation of the quantum-teleportation
*Electronic address: ide@femto.phys.s.u-tokyo.ac.jp setup.
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variance of the squeezed quadratures is reduced by a factor lll. FIDELITY AND THE EFFECT OF GAIN TUNING

of exp(—2r), the entanglement is given lg=tanht).

Alice mixes her input state with reference EPR beam us

ing a 50% beam splitter and performs an entanglement me
surement of the complex field valyg=x_+iy ., where

;(,Z;(A_;(R,
o 2
Y+=YatYr:

As has been shown previoudl§,8], the output state of the

teleportation process can then be obtained by applying
transfer operator to the input,

[ o B))a=T(B) | ¥)a. (3)

Note that the output state is not normalized,
(oud B) | o B)) is the probability of obtaining the mea-
surement resulB in the teleportation.

The transfer operato?g(,B) for variable gaing can be
expressed using photon number stdteésand displacement

operatorsD (),

1—0°

T

Tap= 2 a"D(gB)IMea(nlD(-p). (4

since

_ The success or failure of quantum teleportation can be
characterized by the teleportation fidelity. It is defined by the

a_

overlap between the input state and the output $&teUs-

ing the results derived in the preceding section, we can ob-
tain the gain factor dependence of teleportation fidelity for
the different input states.

The total fidelity is obtained by averaging over glleven
though B is accessible classical information and the output
state is really a pure state conditioned By In this sense,

ain tuning is a method to optimize the use of the informa-
lon B. In the case of a coherent-state teleportation, the fidel-
ity is

Fio)= | dBlaltamla)?

:J o2 ge- (- @la-Blo-I(1-aa— (g~

g
®

We note that maximal fidelity is always obtainedgat 1.
=1 is optimal for|a|—c. Figure Za) shows the gain de-

1—q?
=—  — &©
1-2qg+g?

1—q?

- m(l—g)zwz :

. . . . g
This operator can now be applied to various input states. IRendence of the teleportation fidelity for a coherent input

the case of a coherent state, the output state is

Y
TIB) )= /1 Wq e~ (1-09)|a—BI%12g1/2(1-qg) (aB* — a* B)

X|qa+(g—q)B). (5

state of amplitudéa|=1 at different values of the entangle-
ment parameteq. The peak of the gain dependent fidelity
shifts to lower values off and gets lower and broader as the
entanglemend] decreases. The peak is always at a gain value
larger thang=q, but lower thang=1. Therefore, gain tun-
ing tog<1 can improve the teleportation fidelity for coher-

This output state is also a coherent state with an amplitudsm input states. However, the fidelity remains below 1 for all

given by a gain dependent superpositionaofind 8. Spe-
cifically, the gain factor affects th8 component of the out-
put amplitude. In the case of vacuum input state, the outp
state is

Y
TUBI0)= VT e DR g q)p).  (6)

The vacuum is simply a coherent state witt+0, so the

output state is a coherent state with an amplitude propor-
tional to 8. The input vacuum state can be recovered by

choosingg = q, effectively canceling the displacemdsf. In
the case of a one-photon input state, the output state is

= 1_q2 —(1— 2‘ |2/2A
TABIL) = —— e D [(g—q)B]

X[(1-g%)B*|0)+al1)]. @)

g<1. Moreover, the broadening of the peak indicates that
the fidelity is less sensitive to gain tuning for low valuegjof

Jn the special case of the vacuum staie<0), the fidelity is

Fi)- | sloltymio)

1—q?

ko

f d2Be~ (1-2dg+ )4l

1— 2
1-2qg+g

Figure Zb) shows the gain dependence of the teleportation
fidelity of the vacuum state at several values of the entangle-
ment parameteq. As in the general case of coherent states,
the peak of the gain dependent fidelity shifts to lower gain
values and gets broader as the entanglement parameeer
creases. However, the peak value of the fidelity is always 1 at

This output state is a displaced quantum superposition of g=q. The vacuum state is always teleported successfully at
vacuum component and a one-photon component. Eveg=q because this case corresponds to a simple attenuation at
though this is also a pure state conditioned Ayit is not  a beam splitter with reflectivity 4 q? [7,8].

possible to recover the one-photon input state by varying the In the case of a one-photon state teleportation, the fidelity
gain. is
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FIG. 2. Theg (gain factoj dependence of fidelity for a coherent states With=1 (a), the vacuum stat¢b), and the one photon
state(c). The coherent-state teleportation fidelity. The different curves correspond to entanglement parameter \gu@®®fdotted
line), 0.75(dashed ling 0.5 (thin line), 0.25(thick line), O (thickest ling, respectively. The peak positions shift to lower valueg ofith

decreasing).

1 5 . 5 obviously equal fog and—g. The right peak of the Fig.(2)
Fq(g):f d“BI(L|T3(B)[ 1), changes in a similar way to the peak of the Figa)2or
|a|=1. Once again the maximal fidelity is always found at
1-q? - g<1. Both peaks shift to lower gain values as the entangle-
= 7f d?pe~(1-2a9+97)IA| ment parametey decreases. The right peak also gets broader
m and lower with decreasing. The peak position is always
betweeng=q and g=1, with its lowest gain value ag
=1/\/2 for q=0. Some additional gain is always necessary
to replace the photon losses sufferedyatq [8]. Since the
[(g—q)%(1—qQ)? fidelity is always impr_oved by Iowering the gain below 1, we
conclude that an optimal gain conditigi<1 can be found
for any selection of states. In the following section, we apply

X[(1—qg)(g—a)|Bl*+al?

i
(1-2qg+g??

201 _~2\2
g7 (1=a%)7]. (10 this result to two examples.
Figure 2c) shows the gain dependence of the teleportation
fidelity of the one-photon state at several values of the en- IV. OPTIMAL STRATEGIES FOR UNKNOWN
tanglement parameter. Two peaks appear whep<1. The INPUT STATES

second peak is a result of the phase-space symmetry of the
single-photon input state. This can be understood most One possible selection of states to encode quantum infor-
clearly atq=0, where the output state is a coherent statamation are coherent states with fixed amplitude and variable

|gB) and the overlap with the input photon number state iphase| ¢)= || a|exd —i¢]). For example, information could
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FIG. 3. The gain dependence of the coherent-state teleportation
fidelity at an entanglemenf=0.5. The curves correspond to input
intensities| «|>=0 (thickest ling, 1 (thick line), 10 (thin line), 100
(dashed ling

FIG. 4. Relation between optimal gain and input intensity for a
coherent-state input at an entanglement paranugted.5.

AF=0.16. The fidelity for coherent-state teleportation with
be encoded in the stat¢a),|ia),|—a), and|—ia). Since  known intensity can thus be significantly improved by an
the gain dependence of fidelity for coherent states does nefppropriate choice of the gain parameger g,,,;. Note that
depend on phase, the optimized gain is the same for all suahe short analysis of gain tuning given in R§4] for the
states. It is, therefore, possible to determine the optimal gaigxperimental realization of continuous-variable teleportation
directly from Eq.(8). Figure 3 shows the gaig dependence was only applied to the high intensity limit ¢fr|>—o. As
of the fidelity for input field intensities of|?=0,1,10,100 mentioned above, the maximal fidelity is then found to be
for teleportation with an entanglement qf=0.5. For|a/|? extremely close tg=1. In this regime, a very precise mea-
=0 (vacuum inpu, the peak value of the fidelity is 1 @&  surement is necessary to reveal the slight shifygf due to
=(g=0.5. The input vacuum state is perfectly recovered by ane finite value of a| actually used in the experiment.
gain tuning ofg=q=0.5. With the increase of the input field Another typical encoding scheme for quantum informa-
intensity|«|?, the fidelity peak approaches 0.75g¢ 1. For  tion uses the polarization states of single photons.
|a|?>0 the input coherent state cannot be recovered fully byContinuous-variable quantum teleportation can be applied to
gain tuning. Nevertheless some improvement of the fidelitysuch photonic qubits by teleporting each of two orthogonal
is always possible through gain tuning to an optimal gainpolarization modes in parall¢B]. Since successful telepor-
value ofq<gqp(q) <1. tation requires that both the zero-photon component and the

The optimal gain value is found by maximizing the fidel- one-photon component of the qubit are teleported without
ity. See the Appendix for details of the calculation. For co-
herent states, the optimization condition depends on the in- o
tensity of the input fields. In its most compact form, it reads F (Q)

—-q)(1-2 2
|a|2:(gopt a)( jgopt+ gopt) . (11
(1+Q)(1_Q) (1_gopt) 0.

Figure 4 shows this relation betwe¢a|? and gop for an
entanglement of§=0.5. The optimized gaig,,; varies from 0.
0.5(=q) at|a|?=0 to 1 for |a|>—. The significance of r
gain tuning is already appreciable|at?=12, where a gain 0.4
of gop=0.95 is optimal, and it rapidly approaches the
vacuum situation below intensities pf|>=4. At |a|?=1,

the optimized gain is already as low gg§,=0.72. The im- 0.2t __ __ — AF
provement of fidelity achieved by gain tuning |at|>=1 is -
shown in Fig. 5. A substantial improvement of fidelity by :
gain tuning is observed for almost all entanglement values. ) ' q
The increase in fidelity achieved by gain tuning increases

monotonously as the entanglementiecreases, with a dif- FIG. 5. The solid line shows the optimized fidelitycga, for the
ference between the optimized and nonoptimized fidelityteleportation of a coherent state wjh| = 1. The dashed line shows
greater than 0.09 fag<<0.7. The maximal increase in fidelity the nonoptimized fidelity ag=1 for comparison. The broken line
is obtained in the limit of no entanglemeng<0) with  shows the difference betweeF =F ,— Fn0p between the two.
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FIG. 6. The solid line shows the joint fidelity of the two-mode ~ FIG. 7. Dependence of optimized gaig,(q) on the entangle-
teleportation of a vacuum state and a single-photon state as a fungient parameteq for the teleportation of a photonic quifsolid
tion of the gain factog at an entanglement @f=0.5. The dashed line) and for the teleportation of a coherent state with amplitude
lines show the fidelity of the single-mode teleportation of vacuum|a|=1 (dashed ling
state and of a single-photon state, respectively. The joint fidelity
Flont js equal to the product dfY,,(g) andF1,(g). Jop @)~ 0.6+ 0.4q. (13)

changes to the quantum state, the total fidelity of the processor practical purposes, this simplified relation should be suf-
can be written as a product of the two individual fidelities for ficient to achieve improved fidelities for single-photon tele-
vacuum and for single-photon teleportation. As shown in Ap-portation. Note also that a similar optimization would apply
pendix B, this is even true if the polarization of the qubit is if the quantum information was encoded into vacuum or one-
unknown. Since neither the homodyne detection nor the disphoton states within a single mode.
placement is sensitive to the choice of polarization direc- The improvement of fidelity by optimized gain tuning for
tions, the fidelity for a single photon of unknown polariza- photonic qubit teleportation can be obtained framy( )
tion is always given by the joint fidelity ™= FgFé. The  using Eq.(12). Figure 8 shows a comparison between the
gain dependence of this joint fidelil»}"(q‘"m: FgF}4 reads optimized fidelity F ,,; and the nonoptimized fidelit§ nonopt

as a function of the entanglement paramefeF . is ob-

Fioit ) (1-g?)? (0-0(1-qg? tained with the optimized gaigq,(q), while for F oo the
q (1-2qg+g?)* gainis fixed agzll..At qz'O, Fhe.opt|m|zed fldellt.y is 0.221
while the nonoptimized fidelity is 0.125. The difference of
+9%(1-9%?]. (120  about 0.1 does not change much upqe 0.6, so that an

Figure 6 shows the gain dependence of this fidelity together joint
with the fidelities for the vacuum and for the one-photon F (
teleportation at an entanglementg# 0.5. The main peak of 1
the joint fidelity curve is found between the maxima of the
vacuum and the single-photon fidelities. At=0.5, gopt 0.8
=0.79 gives a maximal joint fidelity of 0.44, compared with
a fidelity of 0.35 atg=1. The dependence of optimized gain
on the entanglement parametpcan be determined by ana-
lytically maximizing the fidelity. See the Appendix for de-
tails of the calculation. Figure 7 shows the optimized gain 0.4}
Jopt @S @ function of entanglementfor both the photonic
qubit and for a coherent state of intengjity}>=1. Note that .
both curves are very close to each other, suggesting that th ~*
gain tuning is quite similar for both single photons and co-
herent states with an average photon number of one. In the 02 02 06 0B 1

case of no entanglement @t 0, the optimized gai,,(q) q

is 0.544 for the coherent state and 0.577 for the photonic

qubit. It increases almost linearly to 1 as the entanglergent  FIG. 8. The solid line shows the optimized fidelityga, for the

is raised from O to 1. As a rule of thumb, optimal gain tuningteleportation of a photonic qubit. The dashed line shows the non-
for the teleportation of photonic qubits is obtained at optimized fidelity atg=1 for comparison.

q)
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increase of 0.1 in fidelity is possible for most cases of pho- A=(a’+3q),

tonic qubit teleportation. Again, this value is similar to the

improvement of fidelity achievable for coherent states with B=A2+6qg°—3,

|a|?=1. However, the improvement for photonic qubits ap- (A5)
pears to be even more significant, given the relatively low C=A3+279>—9a%(2—q?),

total fidelity of this teleportation.

D=(C+-B3+C?)~"

o . ) . We can obtain the optimized fidelitff 5= F*(dop) from
The fidelity of continuous-variable quantum teleportationihis result and Eq(8).

can be enhanced by varying the gain in the measurement | i ewise, the optimal gain for the teleportation of a pho-

dependent modulation on the output field. We have showgynic qubit composed of a vacuum state and a single-photon
that gain tuning always maximizes the fidelity at a gain valuégizte is obtained by differentiating EG.2)
of g<1. The specific results for coherent states, vacuum, and

single photons have been obtained. Using these results, the

V. CONCLUSION

optimal gain tuning for the teleportation of coherent states dF]c?Im(g) _ng(g) Fl(g)+F° )dFé(g)

with known amplitude but unknown phase and for the tele- dg  dg a9 a9 dg

portation of the polarization of a single-photon qubit have

been determined. For entanglement parameterg<00.7, _ 2(1-g%)? 20205—5 3\ 4
improvements of about 0.1 are possible in the fidelity of T (1—2qg+gz)5[ 9°g°=5(a+a%)g
single-photon teleportation. Similar improvements are ob-

tained for coherent states with intensjiy|?=1. These re- +2(3+30°+49%)g*~4q(2+29°+q*)g?

sults demonstrate the usefulness of gain tuning for input

— 2 A\~ 3
states with a low average photon number. +2(-1+49°+29%)9-3q"+ql. (AB)

Again, a polynomial forg,, is obtained. Sincg,, must be
ACKNOWLEDGMENT one atq=1, we express this polynomial in terms of the gain

We would like to thank Professor Mio Murao for helpful tuning parameten=1—gq. It then reads
discussions.
20°h°+5q(1—q)*h*+2(3— 100+ 139°— 109°+4q*)h®

—2(1-q)%(9—q+8g°~29°)h*+4(1-q)*(4—q
+30g°—2g%)h—4(1—q)3(1+q?) =0. (A7)

APPENDIX A: CALCULATION FOR OPTIMAL GAIN

Maximum fidelity for a coherent-state teleportation is ob-
tained at a gaing,y, which satisfiesdFg(g)/dg=0. The
derivative of the fidelity given by Eq8) reads

dF2(g)

whereh=1—g,,. Solutions for this optimization condition
have been obtained numerically. As above, we can then de-

=2[—(g—q)(1—-2qg+g?) +(1+q)(1—q)2 termine the optimized fidelitf 5= F1*"(gop) from this re-
dg sult and Eq(12).
1-¢g?
X(1=g)all——— APPENDIX B: POLARIZATION INDEPENDENCE
(1-29q9+9°) OF THE FIDELITY FOR SINGLE-PHOTON
- QUBIT TELEPORTATION
Xex;{ - m(l—fﬂzwz : (A1) If a single photon of unknown polarization is teleported,

the input photon stat¢S) is an unknown superposition of
horizontal and vertical polarization stafé$)=|1)4|0), and

Therefore, the optimized gay, iS given by the polynomial
P 950bp 1S 9 yihe poy |[V)=]0)4|1)y . The unknown polarization state can thus be

gﬁpt—(a2+ 3q)g§m+(1—2q2)gopt+(a2—q)=0, written as
(A2)
where |S)=cpu|H)+cyV). (B1)
2= (14 9)(1—a)2 al?. A3 Experimentally, this stqte is teleported by measumgand
a=(1+9(1-g)al (A3 By and applying the displacemeBt(8,8y). In this pro-
The solution can be written as cess, the experimentalist uses no information on the actual

signal polarizatiors.

1 B It is nevertheless possible to transform the calculation of
Jop—3| A+ 5D (A4)  fidelity into the S,P basis, whereP is the polarization or-
thogonal toS If the unitary transformJ rotates the polar-
where ization so that
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|S)=U[H), U'T(Bh.BVU=T(chBu+CyBy.CuBr—ChBy). (B6)
B2
|P)= U|V), (B2 It is, therefore, a straightforward matter to express the trans-
fer operator in the basis of the unknown input state, even
the fidelity for the teleportation of th&polarized state can though this basis was not used in the experiment and all
be written as measurement data was obtained inithe/ basis. This prop-
erty of the transfer operator greatly simplifies the determina-

Fj(;)int:f dZBHdZIBV|<H|0T:rq(,8H ,,BV)UIH>|2. (B3) tion of the overall fidelity. By transforming the integration

using
It is now possible to apply the unitary transformations to Bs=Cp B+ CyBy
'T'q(BH ,Bv). This is particularly simple foBy=B,=0, be- (B7)
cause'Tq(0,0) is a function of the total photon number Bp=CyBu—CuBy,
Niotar= Ny +Ny=ng+np, which is independent of the mode
decomposition, the fidelity for the teleportation of an unknown polarization
) reads
A 1-9° - -
T4(0,0= gy,
K 77 joint 2p 42 z 2
Flom— [ 6Bl (H T (B B H) P
1-9%> - -
= q(netns), (B4)
an

- [ adiaiTyBlnI? | dBelolTy B0
Therefore,U"T,(0,000=T,(0,0). The results for all other (B8)
measurement values are obtained by applying displacement

operators to?q(0,0). Since the displacement generated byOnce more we would like to emphasize that this formulation
f)(aH ,ay) is linear in the field components, its transforma- of fidelity does not depend on the polarization basis used in

tion reads the experiment and does not relate to any actual information
required for the teleportation process. It is, therefore, pos-
U™D(ay,ay)U=D(cyay+cyay ,Cyay—Chay). (B5)  sible to apply the product of the single-photon fidelity and

the vacuum fidelity to the teleportation of an unknown po-
By combining these transformation properties, we obtain larization state of a single photon.
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