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Demonstration of a reversible phase-insensitive optical amplifier
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We experimentally demonstrate phase-insensitive linear amplification of a continuous variable system in the
optical regime, preserving the ancilla system at the output. Since our amplification operation is unitary up to
small excess noise, it is reversible beyond the classical limit. Here, entanglement between the amplified output
system and the ancilla system is the resource for the reversibility, and the amplification gain is G = 2.0. In
addition, combining this amplifier with a beamsplitter, we also demonstrate approximate cloning of coherent
states where an anticlone is present. We investigate the reversibility by reconstructing the initial state from the
output correlations, and the results are slightly beyond the cloning limit. Furthermore, full characterization of
the amplifier and cloner is given by using coherent states with several different mean values as inputs. Our
amplifier is based on linear optics, offline-prepared additional ancillas in nonclassical states, and homodyne
measurements followed by feedforward. Squeezed states are used as the additional ancillas, and nonlinear optical
effects are exploited only for their generation. They introduce nonclassicality into the amplifying operation,
making entanglement at the output.
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I. INTRODUCTION

Quantum optics is governed by rules imposed by commu-
tation relations that have to be kept during deterministic time
evolution. Optical amplification is no exception to this story.
Typically, the amplified output suffers from inevitable excess
noise. This limitation is quantum mechanically imposed, thus,
does not depend on the specific realization methods. Caves
classified general linear amplification into phase-insensitive
amplification (PIA) and phase-sensitive amplification (PSA)
[1]. He also systematically derived the quantum limit of
excess noise for such general linear amplification with ar-
bitrary gain from the requirement to preserve commutation
relations. This excess noise originates from quantum fluc-
tuations in the auxiliary system required to keep energy
conservation.

We concentrate on deterministic PIA, supposing the target
of amplification to be the optical wave amplitude of a single
mode, which is denoted by the term “signal.” (On the other
hand, nondeterministic PIA is found in Refs. [2–4].) The clas-
sical counterpart of PIA is a conversion of arbitrary complex
wave amplitude α ∈ C into

√
Gα, where G � 1 is the gain of

amplification. As is found in ordinary textbooks, annihilation
operators in quantum optics correspond to complex amplitudes
in classical optics. Therefore, we describe the amplifying
process by the transformation of annihilation operators.
Quantum mechanically optimal PIA, in the sense that the
excess noise is minimized, can be achieved by the following
transformation [1]:

âout
sig =

√
G âin

sig + eiθ
√

G − 1
(
âin

idl

)†
, (1)

where âin
sig and âout

sig are the signal mode’s annihilation operators
before and after the amplification, respectively. There is an
extra term eiθ

√
G − 1 (âin

idl)
†, which is introduced in order to

meet the commutation relation of [âsig,â
†
sig] = 1 for both the

input and output signal modes. Here, θ ∈ R is an arbitrary

phase factor, and âin
idl is another mode’s annihilation operator

of the auxiliary system. Throughout this paper, the ancilla
mode represented by âin

idl is denoted by the term “idler”
and is distinguished from other ancilla modes. Equation (1)
becomes the input-output relation of optimal PIA when the
idler input is in a vacuum state. The quantum fluctuation
of the idler contaminates the amplified signal. This is the
inevitable excess noise of PIA. Note that this noise penalty in
amplification eliminates loopholes in the uncertainty relation
for joint measurements [5,6]. At the limit of high-gain
amplification, we can see the famous 3-dB cost of the
noise figure for PIA of coherent states [7]. In addition
to this intrinsic excess noise, further nonintrinsic excess
noise may be caused by other ancilla modes in nonoptimal
PIA.

There are numerous practical realizations of optical ampli-
fication. Doped fiber amplifiers (DFAs) and semiconductor
optical amplifiers (SOAs) utilize stimulated emissions [8],
and Raman amplifiers (RAs) and optical parametric amplifiers
(OPAs) utilize nonlinear optical effects. In principle, there is no
quantum-mechanical reason to prevent these realizations from
achieving the optimal PIA in the form of Eq. (1). However,
the real devices with current technology are accompanied by
further excess noises.

Recently, PIA operating almost at the optimal level is
experimentally demonstrated by Josse et al. by utilizing feed-
forward [9]. The reason for the high efficiency of Josse’s PIA
is that it does not require inefficient nonclassical operations
or nonclassical ancillas. It uses a vacuum state as an ancilla,
which is present everywhere, and linear optics and homodyne
measurements followed by feedforward, which are highly
efficient.

Although Josse’s PIA is a good attainment, it is not the
end of the story. The signal transformation in Eq. (1) is an
irreversible thermalizing process. Complete PIA should have
unitary realization on an expanded Hilbert space. In order to
unitarize PIA, a two-mode description is sufficient. The full
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input-output relation of unitary PIA is as follows:

âout
sig =

√
G âin

sig + eiθ
√

G − 1
(
âin

idl

)†
, (2a)

âout
idl =

√
G âin

idl + eiθ
√

G − 1
(
âin

sig

)†
. (2b)

Note that the roles of the signal and idler are symmetric in this
relation.

The significance of unitarization must be the reversibility.
The inverse transformation is easily derived when we take
notice of the fact that Eq. (2) is equivalent to a two-
mode squeezing operation. A two-mode squeezing operation
parametrized by (G,θ ) can be canceled by another two-mode
squeezing operation where the squeezing direction is opposite,
i.e., (G,θ + π ). Nonetheless, in many amplification schemes,
including Josse’s experimental demonstration [9], the idler
output is lost in the unextractable environment, making the
process irreversible.

In order to realize idler-preserving and close-to-optimal
PIA, we require some nonclassicality for the amplifier. This
is in contrast to Josse’s idler-nonpreserving PIA, which does
not require any nonclassicality. A typical strategy to introduce
nonclassicality into feedforward-based quantum circuits is to
use nonclassical states as ancillas. Continuous-variable (CV)
quantum teleportation [10] and CV error correction [11] are
good examples. In these examples, squeezed states are used
as ancillas that support the performance beyond the classical
limit, and the complex operations after the state preparation
stage are efficiently implemented by linear optics.

In this paper, by employing the feedforward-based scheme
proposed in Ref. [12], we demonstrate PIA of coherent
states that preserve the idler output. The scheme basically
relies on linear optics, including homodyne measurements and
feedforward. Squeezed vacuum states are used as additional
ancillas, which inject nonclassicality into our PIA. We resort
to nonlinear optical effects only for generating them. Our
demonstration is for the amplification gain of G = 2.0, which
is tuned via passive optical devices and feedforward electric
circuits. Combining PIA for G = 2.0 with a half beamsplitter,
we also demonstrate 1 → 2 approximate cloning of coherent
states, where an “anticlone” remains at the output. (The
anticlone will be explained in Sec. III.) In principle, our
amplifier and cloner become quantum mechanically optimum
at the limit of infinite squeezing of the ancillas. For the case
of finite squeezing, as is the real situation in experiments,
further excess noise invades in accordance to the level of
the squeezing. However, the degradation is small enough to
retain nonclassical features. The behaviors of our amplifier
and cloner are fully characterized by using several coherent
states as inputs. Furthermore, we also pay much attention
to the output correlations because nonclassical properties
clearly appear in them. For the PIA experiment, we check
the Einstein-Podolsky-Rosen (EPR) correlation between the
signal and idler outputs. For the cloning experiment, we
check bipartite entanglement between each clone and the
anticlone, which, as a whole, proves tripartite entanglement of
class-1 [13]. Moreover, for both experiments, the reversibility
is investigated from the output correlations.

Our idler-preserving PIA is significant in several respects.
First of all, the reversibility will pave the way to new schemes.
Recently, there is a proposal of a CV quantum interface that

enables, in principle, a unit fidelity of transfer using such
reversible PIA [14]. Moreover, the reversibility in cloning is
also advantageous. Cloning of unknown states is distribution
of information, and its reversibility reserves the option to
recover the distributed fragments of the information. This will
be further discussed in Sec. III. Second, our PIA would have
some applications as a two-mode squeezing operation. Note
that a one-mode squeezing operation is already demonstrated
successfully in Ref. [15], with a similar approach.

In this Introduction, PIA has been described together with a
brief historical review. In particular, the nonclassical property
of PIA is discussed, which is obscure in many amplification
processes because the idler output is lost in the unextractable
environment. The subsequent contents of this paper are as fol-
lows. In Sec. II, feedforward-based PIA is described, explicitly
showing the excess noise due to finite squeezing of ancillas. In
Sec. III, CV quantum-state cloning and its connection with PIA
are described. In Sec. IV, the experimental setup is described.
In Sec. V, the experimental results for PIA of coherent states
with G = 2.0 are shown. In Sec. VI, the experimental results
for 1 → 2 approximate cloning of coherent states are shown.
In Sec. VII, our experimental achievements are summarized.

II. FEEDFORWARD-BASED AMPLIFIER

In our definition, feedforward means that the operations
after some measurements are changed depending on the mea-
surement outcomes, which, in general, are obtained randomly.
In particular, in this paper it indicates phase space displacement
operations, the amounts of which are proportional to the results
of homodyne measurements.

We know two specific schemes for feedforward-based PIA
that preserve the idler at the output. One scheme is proposed
by Filip et al. in Ref. [12], in which PIA is composed of
two feedforward-based single-mode squeezers proposed in the
same paper. The other scheme is proposed by Josse et al. in
Ref. [9] as a modification of the idler-nonpreserving PIA. Note
that Josse’s idler-preserving PIA is just a theoretical proposal
and the idler-nonpreserving PIA alone is experimentally
demonstrated.

Both Filip’s and Josse’s schemes rely on linear optics,
including homodyne measurements and feedforward, and
require offline-prepared nonclassical states as ancillas. More-
over, in both schemes, the gain of amplification is accurately
and stably determined via the choice of passive optical
devices and, correspondingly, feedforward gains. As for the
nonclassical ancillas, Filip’s scheme requires two single-mode
squeezed states; on the other hand, Josse’s scheme requires a
two-mode squeezed state. Since two single-mode squeezed
states can be converted to a two-mode squeezed state and vice
versa by a half beamsplitter interaction, the amounts of the
nonclassical resources required for the two distinct schemes
are the same.

For both schemes, the feedforward-based PIA coincides
with the quantum mechanically optimal PIA only at the limit
of infinite squeezing of the ancillas. For the case of finite
squeezing, excess noise contaminates the output to some
extent. Note that this is a common matter of feedforward-
based CV deterministic processing [10,11,16]. The difference
between the two schemes proposed by Filip and Josse solely
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FIG. 1. (Color online) Experimental setup. OPO: Optical parametric oscillator. EOM: Electro-optic modulator. LO: Local oscillator. HBS-P,
HBS-F, HBS-C: Half beamsplitter. BS-A, BS-B: Beamsplitter with reflectivity R ≈ 0.17. Four beamsplitters (HBS-P, HBS-F, BS-A, and BS-B)
are variable, composed of two polarization beamsplitters and a half-wave plate.

arises in this excess noise. For Filip’s scheme, it appears
symmetrically in the signal and idler outputs. On the other
hand, for Josse’s scheme, it appears only in the idler output.
The better choice between different schemes depends on the
specific application.

We have chosen the symmetrical one. In the demonstration
in Sec. V, we confirm the symmetry of PIA by swapping the
roles of the signal and idler.

Figure 1(a) shows the schematic of our PIA, from which the
symmetry of the signal and idler is obvious. Its details will be
described in Sec. IV. Here, we give the input-output relation.
In the following, the quadrature phase amplitudes of each
optical mode are denoted by x̂ and p̂, which correspond to the
real and imaginary parts of the mode’s annihilation operator â,
i.e., â = x̂ + ip̂. The phase factor θ in Eq. (2) can be arbitrarily
changed by pre- and post-processing of the phase rotation of
the idler. Therefore, we consider the case of θ = 0 without loss
of generality. By explicitly showing the excess noise coming
from finitely squeezed ancillas, the input-output relation is as
follows [12]:

x̂out
1 = 1

2

(
1√
R

+
√

R

)
x̂ in

1 + 1

2

(
1√
R

−
√

R

)
x̂ in

2

−
√

1 − R

2
x̂out

A , (3a)

p̂out
1 = 1

2

(
1√
R

+
√

R

)
p̂in

1 − 1

2

(
1√
R

−
√

R

)
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2

+
√

1 − R

2
p̂out

B , (3b)

x̂out
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2

(
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+
√
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)
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(
1√
R

−
√

R

)
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1

+
√
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p̂out
2 = 1

2

(
1√
R

+
√

R

)
p̂in

2 − 1

2

(
1√
R

−
√

R

)
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1

+
√

1 − R

2
p̂out

B . (3d)

The subscripts “1” and “2” represent the two main modes. They
correspond to the signal and idler, although we do not specify
which is which because the relation is symmetric. x̂A and p̂B

denote the squeezed quadratures of the two ancilla modes.
At the limit of infinite squeezing, these terms vanish, and the
transformation above strictly coincides with the optimal PIA.
The amplification gain G is determined via one parameter R,
which is a common reflectivity of two beamsplitters BS-A and
BS-B in Fig. 1(a), with the relation of

G = 1

4

(
1√
R

+
√

R

)2

. (4)

One-to-one correspondence of 1 � G < ∞ and 0 < R � 1
is easily checked. Note that the feedforward gain is also
parametrized by R. It is chosen so that the antisqueezed noises
from the ancillas are canceled out at the output.

For the demonstration of G = 2, the value of R should be
chosen as 3 − 2

√
2 ≈ 0.17. The resulting input-output relation

is as follows:

x̂out
1 =

√
2 x̂ in

1 + x̂ in
2 −

√√
2 − 1 x̂out

A , (5a)

p̂out
1 =

√
2 p̂in

1 − p̂in
2 +

√√
2 − 1 p̂out

B , (5b)

x̂out
2 =

√
2 x̂ in

2 + x̂ in
1 +

√√
2 − 1 x̂out

A , (5c)

p̂out
2 =

√
2 p̂in

2 − p̂in
1 +

√√
2 − 1 p̂out

B . (5d)

III. QUANTUM-STATE CLONING

It is known as the no-cloning theorem whereby an unknown
quantum state |ψ〉 can not be perfectly duplicated as |ψ〉|ψ〉
[17]. However, approximate cloning is possible, in general,
which can go beyond some classical limit.

In this section, we will discuss CV cloning and make its
connection with PIA. Furthermore, its reversibility is discussed
by introducing the notion of anticlone. In general, cloning
can be described as a unitary operation supported by ancilla
systems. The ancilla output system generally depends on the
cloned state and, as is mentioned later, anticlones are obtained
from the ancilla system as a by-product of cloning. We show
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the equations for 1 → 2 cloning, which correspond to the
experimental demonstration in Sec. VI. However, PIA allows
general K → L cloning, in principle, which will be described
in the Appendix A. Here, the notation K → L means that L

clones are created from K identical originals.
To begin with, we clarify our stand on cloning. Quantum-

state cloning is looked on not only as an approximate
duplication of a quantum state, but also as a distribution of
classical information embedded in the quantum state. The
latter way of viewing this is applicable to, e.g., the situation
in quantum key distribution (QKD), where the information
sent from the sender Alice is distributed between the receiver
Bob and an eavesdropper Eve. Optimal approximate cloning
can differ depending on which aspect we focus on. In this
paper, we take the latter approach. Therefore, we do not
rely on the traditional fidelity-based evaluation [18], which
corresponds to the former way of viewing, but rather think
of the estimation precision of the embedded information. In
addition, the asymmetric cloner is significant as well as the
symmetric cloner. An arbitrary share ratio of the information
is achieved by the cloner with tunable asymmetry.

Aside from this, the choice of appropriate cloner generally
depends on how the information is embedded in the state
space. A typical embedding of CV is a displacement on
some quantum state |ψ〉. Here, |ψ〉, which we refer to as
a core state, is either known or unknown. Then, the set of
possible original states is S = {D̂(xd,pd)|ψ〉 | (xd,pd) ∈ R2},
where D̂(xd,pd) ≡ exp[−2i(xdp̂ − pdx̂)] is the displacement
operator. [In the following, we consider for simplicity the case
in which (xd,pd) is uniformly distributed.] As a special case
of this, the set S becomes all coherent states when the core
state |ψ〉 is known to be a vacuum state. Ordinary CV QKD
protocols employ this way of embedding [19]. For the above
embedding, the measure of the cloning precision should be
related to the estimation of (xd,pd).

We suppose a simple picture of cloning where some additive
noise degrades the original state as the penalty of cloning.
Then, the quality of cloning is totally determined by this
additive noise. For simplicity, we impose rotational symmetry
on the noise added to each clone. This is naturally justified
when the core state |ψ〉 is either known to be symmetric or
unknown. The additive noise is characterized by its variance
nk ≡ (�xnoise

cln−k)2 + (�pnoise
cln−k)2 [20], where k ∈ {1,2} for 1 → 2

cloning. Note that nk corresponds to the mean photon number
of thermalization in the kth clone.

The variances nk are directly connected to the mean-square
errors in the estimation of (xd,pd). Therefore, a measure can
be constructed from them. Given the desired asymmetry, the
cost function is determined, which quantifies the nonideality
of cloning [20]:

C(n1,n2) = c1n1 + c2n2. (6)

The cloner that minimizes the cost function is the optimal.
The positive parameters ck determine the asymmetry (c1 = c2

corresponds to symmetric cloning).
In contrast to the evaluation by the state fidelity, where

non-Gaussian cloning can slightly go beyond the Gaussian
cloning for coherent states [21], the optimal cloner becomes
Gaussian when the cost function is set as a function of the

additive noise variances, as in Eq. (6). This corresponds to the
fact that Gaussian attack in CV QKD gives the upper bound
on information available to an eavesdropper [22,23].

There is a restriction on the excess noises nk , which is
imposed by quantum mechanics [24,25]:

n1n2 � (1/2)2. (7)

The optimal cloner with respect to the cost function in Eq. (6)
satisfies the equality in Eq. (7) by necessity. This noise penalty
comes from consistency with the uncertainty relation. The
attainable information of the original state does not increase
by cloning due to this noise. Recall that the inevitable noise in
PIA comes from the same reason.

Indeed, the optimal cloner can be constructed from the
optimal phase-insensitive amplifier and beamsplitters. For
example, 1 → 2 cloning with arbitrary asymmetry is achieved
by putting an amplifier in one of the arms of a Mach-Zehnder
interferometer [25]. In particular, for symmetric cloning, the
reflectivity of the first beamsplitter becomes unity, i.e., it is
achieved by first amplifying the original with G = 2 and
then splitting the amplified signal in half. This procedure can
be extended to K → L cloning [20,26]. The optimality of
this realization is proven with respect to the cost function in
Eq. (6) [20].

For Gaussian cloning of coherent states, the added noise
variance nk and the fidelity Fk have correspondence as
Fk = 1/(1 + nk). By using Eq. (7), the upper limit of fidelity
is obtained for arbitrarily asymmetric Gaussian cloning. In
particular, it becomes F = 2/3 for the symmetric case. This is
significantly higher than the classical limit of F = 1/2, where
we regard the limit of state estimation as the classical limit
of symmetric cloning because the estimated state is classical
information, which can be copied any number of times. Note
that the sameness of state estimation and asymptotic cloning,
where the number of clones tends to infinity, is proven for
a general set S of possible original states [27]. We refer to
these fidelities only for the consistency with previous works.
We stress again that our actual interest is minimization of the
additive noise variances.

We have seen above that the clones are made of the signal
output of the amplifier. When cloning is unitarily realized, we
still have the idler output, the state of which is affected by the
original state to be cloned. Now we pay attention to this ancilla
output system.

Anticlones are by-products of cloning that are obtained
from the ancilla systems. In general, in coherent-state cloning,
they are obtained by beamsplitting the idler output. In particu-
lar, for 1 → 2 cloning, the idler output itself is an anticlone. An
anticlone is an approximation of the phase-conjugated original
state or, in other words, the output of an approximate NOT gate.
The qubit version of this gate is demonstrated in Ref. [28].

Anticlones are important when we are concerned with the
reversibility. The originals can, in principle, be perfectly recov-
ered only when all the clones and anticlones are present. For the
reversibility, the essential resource is nonclassical correlation,
or entanglement, among output states. (Conceptually, the ex-
cess noise is canceled by using the nonclassical correlations.)
Therefore, we discuss the existence of entanglement in the
three-mode output system of 1 → 2 coherent-state cloning.
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Clones are obtained by splitting the amplified signal, thus,
there is no entanglement between clones. However, there is
entanglement between each clone and the anticlone. We stress
that anticlones without entanglement with clones can not be
used for full recovery. Suppose the following situation: Two
independent cloners are running, and the same states are used
as the inputs for them. Then, the clones obtained from one
cloner do not have entanglement with the anticlones from the
other. In this case, the originals can not be recovered from the
noncorrelated outputs.

For the recovery of the originals, the inverse unitary
operation is not required. The optimal cloning can be fully
reversed by the Bell measurement on a clone and an anticlone
and subsequent feedforward to the remaining single clone [29].
Note that this recovery scheme works not only for coherent
states, but also for arbitrary states. This scheme is efficient
from two points of view. One is on a technical level in which
the homodyne measurements and feedforward displacement
operations are quite efficient with current technology. The
other is on a conceptual level in which the performer of
the Bell measurement and the owner of the remaining clone,
who is willing to recover the original, can be spatially
separated. In this case, they only need classical channels
for communication, and never quantum channels. Note that
even partial reversal of cloning is possible with a similar
scheme based on local operations and classical communication
(LOCC), which converts, e.g., symmetric clones to asymmetric
clones [29].

We would like to discuss the practical aspects of cloning
and its reversibility assisted by classical communication. As
described above, cloning of a quantum state is regarded as
distribution of information among plural participants. The
information of the original is, to some extent, accessible to
individual participants. This situation is clearly distinguished
from that found in the usual quantum error correcting codes
where the quantum information is mapped on a larger Hilbert
space so that no information about the original is accessible
from a local system. Such sharing of information would play
an important role in several scenarios, in which the reversibility
would give a tactical aspect to information exchange. For
the example of QKD, cloning is a possible attack by an
eavesdropper. In this example, the reversibility of cloning
provides the opportunity for the communicators to negotiate
with the eavesdropper when they know the attack [29]. Since
coherent states are a strong candidate for the information
carrier in quantum communication, cloning of coherent states
is especially of great significance.

There are several experimental previous works that demon-
strate cloning of coherent states beyond the classical limit
of F = 1/2 in nonreversible ways, i.e., their anticlones are
lost in the environment. In Ref. [30], using feedforward-based
PIA of Ref. [9], almost quantum-limited 1 → 2 cloning is
demonstrated. In Ref. [31], telecloning is demonstrated, where
the original coherent state is teleported and cloned at the same
time.

In Sec. VI, we demonstrate the 1 → 2 symmetric Gaussian
cloner, which preserves an anticlone at the output. As is shown
in Fig. 1(b), we apply a half beamsplitting to the signal output
of the feedforward-based PIA with the gain G = 2 described
in Sec. II. In the demonstration, the reversibility is checked

from the output correlations. To our knowledge, there is no
previous experiment of this kind, even in the qubit regime.
Although our demonstration is only for coherent states, our
cloner should equally work for arbitrary states when evaluated
by the additive noise.

We close this section by giving the input-output relation of
the optimal 1 → 2 symmetric cloning. By substituting G = 2
and θ = 0 into the input-output relation in Eq. (2) and splitting
the signal output in half, we obtain

âcln−1 = âorg + 1√
2
â
†
idl + 1√

2
âvac, (8a)

âcln−2 = âorg + 1√
2
â
†
idl − 1√

2
âvac, (8b)

âa−cln = â†
org +

√
2 âidl, (8c)

where the subscripts “org,” “cln-1,” “cln-2,” and “a-cln”
denote the original, first clone, second clone, and anticlone,
respectively. The subscript “idl” denotes the idler input for
PIA, which is in a vacuum state. The annihilation operators
with the subscript “vac” indicate another ancilla in a vacuum
state, which invades from the empty port of the final half
beamsplitter. For the excess noise of the two clones, n1 =
n2 = 1/2 is easily checked. Therefore, this cloner is optimum
when evaluated by the cost function in Eq. (6) with c1 = c2.
When PIA is realized with a feedforward-based scheme as is
found in Sec. VI, further excess noise contaminates the output
in accordance with the squeezing levels of the ancillas.

IV. EXPERIMENTAL SETUP

A schematic of the experimental setup for PIA is illustrated
in Fig. 1(a) and that for approximate cloning is illustrated in
Fig. 1(b). The light source is a Ti : sapphire laser, which has a
continuous-wave single-mode output of 860 nm in wavelength
and about 1.5 W in power. We treat the quantum states of
narrow sidebands located at 1.34 MHz apart from the optical
carrier frequency.

Two main beams that go from in-1 and in-2 to out-1 and
out-2 in Fig. 1(a) carry the quantum states that are targets of
PIA. The setup has the form of a Mach-Zehnder interferometer
that holds a single-mode squeezer (squeezer-A or squeezer-B)
in each arm. This decomposition of unitary PIA into squeezers
and beamsplitters is derived from the bosonic version of Bloch-
Messiah reduction shown in Ref. [32]. We note that this setup
is almost the same as that for quantum nondemolition (QND)
interaction, which was demonstrated in Ref. [33]. This fact
shows the capability of our setup to realize many types of
two-mode Gaussian interaction. Combining PIA for G = 2.0
with another half beamsplitter, as is shown in Fig. 1(b), 1 → 2
approximate cloning of coherent states is achieved.

Squeezer-A and squeezer-B are feedforward-based squeez-
ers, which are theoretically proposed in Ref. [12] and experi-
mentally demonstrated in Ref. [15]. Each squeezer consumes
an ancilla in a squeezed state, which is generated by an optical
parametric oscillator (OPO).

Note that several essential optical elements are omitted from
Fig. 1, such as a second-harmonic generation (SHG) cavity
to generate pump beams for OPOs, and three spatial-mode
cleaning cavities (MCCs). One MCC is for local oscillators
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(LOs) for homodyne measurements and auxiliary beams for
feedforward displacements. The other two MCCs are for
individual input beams.

The experimental procedure is divided into three steps:
First, we prepare input coherent states and ancilla squeezed
vacuum states. Second, we implement PIA and cloning via
feedforward. Finally, the output states are homodyne measured
for verification. In the following, we describe the experimental
details of each step.

A. Preparation

In this step, we generate coherent states that are used as
inputs, and squeezed vacuum states that are used as ancillas.

The nonzero mean values of the sideband coherent states
at 1.34 MHz are produced by appropriately modulating the
optical carriers. In our setup, the relative phase of interference
at each beamsplitter is designed to be fixed with active
feedback control. Therefore, in order to make an arbitrary
phase space displacement in the input modes, both amplitude
modulation (AM) and phase modulation (PM) are utilized. AM
and PM make nonzero mean values of x̂ in

1 and p̂in
1 for the first

input mode, and those of p̂in
2 and x̂ in

2 for the second input mode,
respectively. Each of four electro-optic modulators (EOMs)
before PIA in Fig. 1(a) corresponds to one of these four
quadratures. On the other hand, in Fig. 1(b), only two EOMs,
which are both located at the first input beam path, are depicted
before PIA. That is to say, the symmetry of the two input modes
is broken in the cloning experiment. One input mode is the
target of cloning, and the other input mode is set in a vacuum
state throughout. For both experiments, the modulations are
switched on and off in order to use several coherent states as
inputs. After these EOMs, there are MCCs, although they are
omitted from Fig. 1.

Squeezed vacuum states are each generated by an OPO,
which is driven below the threshold. Our OPO has a bow-tie-
shaped configuration with a round-trip length of about 500 mm.
It contains a periodically poled KTiOPO4 (PPKTP) crystal as
a nonlinear optical medium, which is commercially available
from Raicol and has 10 mm length and 1 mm by 1 mm cross
section. The experimental details of our OPO squeezing are
in Ref. [34]. The squeezing level with the pump of about
100 mW is measured in a preliminary experiment at about
−5 dB relative to the shot noise level at 1.34 MHz. The pump
beams for the OPOs are the second harmonic of a fundamental
beam, generated by a SHG cavity. The SHG cavity has almost
the same configuration as that of OPOs, whereas a KNbO3

(KN) crystal is used instead of the PPKTP crystal. Its output
of about 300 mW is divided into two to pump the individual
OPOs.

Modulation sidebands other than 1.34 MHz are exploited
for active feedback control of optical interferences. A modu-
lation at 13.5 MHz is utilized for locking cavities, including
the SHG cavity, the two OPOs, and the three MCCs. On the
other hand, lower-frequency modulations at 193 and 333 kHz
are utilized at the OPOs to lock the phases of the pump beams.
Furthermore, the two input beams are modulated at 108 and
154 kHz. These four low-frequency modulations contribute
to the lock of the downstream interferometric system in the
subsequent steps, as is mentioned later.

B. Amplifier and cloner

The two input beams are combined at a preceding half
beamsplitter (HBS-P) and then sent to squeezer-A and
squeezer-B. After the squeezing operations, the two beams
interfere again at another half beamsplitter (HBS-F), which
completes PIA. By splitting one of the two output beams
by another half beamsplitter (HBS-C), the 1 → 2 cloner is
obtained.

The squeezing procedure goes as follows. First, the main
beam is combined with an ancilla beam coming from an
OPO at a beamsplitter (BS-A or BS-B). Next, one of the two
beams after the beamsplitter is homodyne measured. Finally,
the measurement outcome is fed forward to the remaining
beam. BS-A and BS-B have the common reflectivity of R. This
parameter R determines the degree of the feedforward-based
squeezing and thus the gain of amplification G with the relation
shown in Eq. (4). As is already mentioned, R ≈ 0.17 for our
demonstration of G = 2.0.

The feedforward operation is a phase space displacement,
the amount of which is proportional to the random outcome
of the homodyne measurement. The electric signal from the
homodyne detector is sent to an EOM to be converted into
an optical signal, where the gain and phase at 1.34 MHz are
carefully chosen. They are determined so that the contribution
of the ancilla antisqueezed quadrature to the output modes
is canceled, as is mentioned in Sec. II. The auxiliary beam,
which is modulated by the feedforward EOM, has the power
of 150 µW, 1% of which subsequently enters the mainstream
via an asymmetric beamsplitter (99 : 1).

The powers of the two input beams are 10 µW, and those of
the two ancilla beams are 2 µW. These powers are considerably
smaller than the 3 mW of LOs used for homodyne detections.

The four beamsplitters of PIA (HBS-P, HBS-F, BS-A, and
BS-B) are actually composed of two polarization beamsplitters
and a half-wave plate in the same manner as the QND
experiment in Ref. [33]. Their reflectivities are variable by
rotating half-wave plates. They enable us to measure the input
states as well as the output states with the same homodyne
detectors for verification. The propagation losses of two main
beams are measured to be 7% on average, which mostly come
from these variable beamsplitters.

In order to control the relative phases at beamsplitters with
active feedback, interferences between the carriers and the
low-frequency modulations are monitored. This is typically
done by picking up 1% of the beam after the interference,
although such details are omitted from Fig. 1. For each locking
point, an appropriate modulation sideband is chosen, and the
error signal is extracted from the interference between the
carrier and the sideband by demodulation. However, HBS-P
and HBS-F are exceptions, where the interference between two
modulation sidebands, namely 108 and 154 kHz, is exploited.
The beat frequency of 46 kHz is chosen for the reference signal
of demodulation to obtain the error signals.

C. Verification

PIA is characterized by measuring two-mode input states
as well as two-mode output states using two homodyne
detections. In the cloning experiment, on the other hand,
three-mode output states are compared with single-mode input
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states. The input states are measured by setting the reflectivities
of the four variable beamsplitters to unity and disabling the
feedforward. The quantum efficiency of a homodyne detector
is about 99%, and the dark noise is about 17 dB below
the optical shot noise produced by the LO. The interference
visibilities to the LOs are 98% on average.

The outcomes of the final homodyne measurements are
analyzed in either of the two ways below.

In one way of analysis, the quadrature data are di-
rectly treated, which are obtained by lock-in detection of
1.34-MHz components of the homodyne outputs. A signal
from a homodyne detector is mixed with the reference signal
at 1.34 MHz, and then low-pass filtered with the cutoff of
30 kHz. Subsequently, it is analog-to-digital converted for
storage with the sampling rate of 300 kHz and the resolution
of 14 bits (PXI-5122, National Instruments Corporation). In
this analysis, the phase of the homodyne detection is slowly
scanned. The phase information is stored simultaneously
with the quadrature values using the same analog-to-digital
board. From the resulting marginal distributions, phase space
distributions (i.e., Wigner functions) are reconstructed, where
we assume that all the quantum states obtained in the
experiments are Gaussian. The first and second moments
are computed so that the likelihoods are maximized.

The other way is the power analysis at 1.34 MHz using a
spectrum analyzer. In this analysis, the measured quadratures
are set to either x̂ or p̂. Both the powers of the output
quadratures and those of their correlations are measured for
several input coherent states. The resolution bandwidth is
30 kHz, the video bandwidth is 300 Hz, the sweep time is
0.1 s, and 20 times averaging is taken for each trace.

Note that we can easily see the effect of the Hermitian
conjugate term in Eq. (2b) as a mirror image with the former
way of analysis, whereas we can not do this with the latter.

V. EXPERIMENTAL RESULTS FOR PHASE-INSENSITIVE
AMPLIFIER

The two main modes are denoted by “mode-1” and “mode-
2.” One of them is the “signal” and the other is the “idler,”
which are initially in a coherent state and a vacuum state,
respectively. By swapping the role of the signal and idler, we
check the symmetry of our PIA.

We first show the results of the lock-in detection, because
it is intuitively easier to see. Figures 2 and 4 show the
experimental quadrature values at various phases of LOs.
For Fig. 2, the mode-1 is the signal and the mode-2 is the
idler, whereas for Fig. 4, the mode-2 is the signal and the
mode-1 is the idler. There are three subfigures corresponding
to the signal input (a), the signal output (b), and the idler
output (c). Horizontal axes are the measurement phases φ,
which are scanned from 0 to 2π . The quadrature at φ = 0
corresponds to x̂ and that at φ = π/2 does to p̂. Vertical axes
are normalized quadrature values where the standard deviation
of vacuum fluctuation is 0.5. Each set of data is taken for about
0.2 seconds. Quadrature data are plotted every 20 points in the
figures, whereas the whole data are used for the analysis. The
sinusoidal curve of the signal input represents the nonzero
mean amplitude of a coherent state, and the fluctuation around
the sinusoid represents the quantum noise. With regard to
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FIG. 2. (Color online) Quadrature data. Mode-1 for signal and
mode-2 for idler. The phases of homodyne measurements are scanned
from 0 to 2π , which correspond to horizontal axes. Vertical axes are
quadrature values.

the fluctuation, it grows uniformly at both the signal and
idler outputs. This uniformity is an evidence of the phase
insensitivity of our amplifier. On the other hand, with regard
to the sinusoidal curve, the two output modes show different
behaviors. At the signal output, the amplitude of the sinusoid is
amplified from that of the signal input, maintaining the phase.
At the idler output, the amplitude of the sinusoid is the same as
the signal input, whereas the phase is flipped. This flip is due to
the Hermitian conjugate term in Eq. (2b). For both figures, the
same qualitative behaviors as mentioned above are observed.

Figures 3 and 5 are phase space diagrams, which are
computed fromthe quadrature data shown in Figs. 2 and 4,
respectively. The experimental results (a) and the theoretical
calculations for the optimal PIA (b) are depicted next to each
other. In the theoretical calculations, the experimental value is
used for the amplitude of the signal input. The first and second
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FIG. 3. (Color online) Phase space distributions computed from
the quadrature data in Fig. 2. The first and second moments of
Gaussian Wigner functions are represented by ellipses. (i) Green:
Signal input. (ii) Red: Signal output. (iii) Blue: Idler output.
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FIG. 4. (Color online) Quadrature data. Mode-2 for signal and
mode-1 for idler. The phases of homodyne measurements are scanned
from 0 to 2π , which correspond to horizontal axes. Vertical axes are
quadrature values.

moments of each distribution are expressed by the position
and size of an ellipse, respectively, i.e., it corresponds to the
cross section of the Wigner function. Note that the theoretical
ellipses in (b) are strictly circles. In each phase space diagram,
there are three ellipses. Ellipse (i) is the signal input. Its radius
is almost 0.5, which corresponds to the standard deviation of
vacuum fluctuation. Ellipse (ii) is the signal output. Its center
is about

√
2 times farther away from the origin and its radius is

about
√

3 times larger than those of the signal input (i). Ellipse
(iii) is the idler output. Its radius is almost the same as that of
the signal output (ii), whereas its center is flipped around the
x-axis from that of the signal input (i), which again represents
the Hermitian conjugate term in Eq. (2b).

In principle, we can fully characterize our PIA with only
the above way of analysis that treats quadrature values directly.
However, such treatment requires a large amount of data for
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FIG. 5. (Color online) Phase space distributions computed from
the quadrature data in Fig. 4. The first and second moments of
Gaussian Wigner functions are represented by ellipses. (i) Green:
Signal input. (ii) Red: Signal output. (iii) Blue: Idler output.
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FIG. 6. (Color online) Output powers for vacuum inputs. Vertical
axes are powers in dB scale normalized by shot noises. (i) Black:
Output quadratures. (ii) Cyan: Shot noises. (iii) Red: Theory for
optimal PIA. (iv) Magenta: Theory for our PIA with −5-dB squeezed
ancillas. (v) Blue: Theory for our PIA with vacuum ancillas.

good accuracy. Thus, in the following, we resort to power
measurements using a spectrum analyzer. Not only output
quadratures (shown in Figs. 6 and 7) but also their correlations
(shown in Figs. 8, 9, and 10) are taken for several input states.
In each figure, results of each quadrature are contained in one
of the boxes. Vertical axes are powers in dB scale, which are
normalized by corresponding shot noises.

Figure 6 shows the experimental results for vacuum inputs
(fluctuating traces), together with their theoretical expectations
(straight lines). There are four boxes corresponding to the
four output quadratures, namely, x̂out

1 , p̂out
1 , x̂out

2 , and p̂out
2 .

Traces (i) are the powers of the output quadratures. Traces
(ii) around 0 dB are the powers of the shot noises, which
are used for normalization. Since the inputs are in vacuum
states, the powers of the shot noises correspond to those of
the input quadratures x̂ in

1 , p̂in
1 , x̂ in

2 , and p̂in
2 . We put three

kinds of theoretical lines corresponding to three different
conditions. For the optimal PIA of a coherent state with
G = 2.0, the output quadrature variances become three times
larger than the initial shot-noise-limited variances, where two
from amplification and one from contamination by the other
mode. The corresponding 4.8 dB is marked by lines (iii).
Our PIA with finite ancilla squeezing is suffered from further
excess noise. Assuming −5 dB of squeezing for the ancilla
states, we calculate theoretical values, which are marked
by lines (iv). We also show them with vacuum ancillas by
lines (v). Lines (iii), (iv), and (v) are very close to each other,
thus, other experimental errors are dominant rather than the
ancilla squeezing levels in these results. As is shown later, the
effects of ancilla squeezing more clearly appear in the output
correlations.

Next we use several coherent states as inputs. The results
are shown in Fig. 7. The four input quadratures x̂ in

1 , p̂in
1 , x̂ in

2 ,
and p̂in

2 are displaced from zero mean values by turns, leaving
the other three quadratures at the vacuum level. There are four
subfigures labeled from (a) to (d) corresponding to such four
excitations. For each subfigure, there are five boxes. Trace
(i) in the leftmost box shows the measured power of the
excited input quadrature. The increase of trace (i) from the
shot noise of trace (iv) indicates the degree of the excitation.
The other four boxes on the right side correspond to the four
output quadratures, namely, x̂out

1 , p̂out
1 , x̂out

2 , and p̂out
2 . Traces (ii)
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FIG. 7. (Color online) Output powers for inputs in several
coherent states. One of four input quadratures x̂ in

1 , p̂in
1 , x̂ in

2 , and
p̂in

2 is excited and, at the same time, the other three quadratures
are left at the vacuum level. Vertical axes are powers in dB scale
normalized by shot noises. (i) Magenta: Excited input quadratures.
(ii) Red: Output quadratures with excitation in inputs. (iii) Black:
Output quadratures without excitation in inputs. (iv) Cyan: Shot
noises.

show the output quadrature powers with the input excitation.
They are compared to those without the excitation shown by
traces (iii), which are replottings of traces (i) of Fig. 6.
The obtained results show the following features. When a
quadrature x̂ or p̂ of an input mode is excited, the same
quadratures of both of the output modes are excited, whereas
the conjugate quadratures do not change from the nonexcited
levels. The two increased output powers differ by about 3.0 dB,
where the larger one corresponds to the amplified signal and
the smaller one corresponds to the phase-conjugated idler.
These features are exactly what are expected from Eq. (2) for
G = 2 and θ = 0. Note that the coefficients

√
2 correspond to

the 3.0 dB.
The results in Figs. 6 and 7 are only for the five specific

input states. However, the results for other input states can
be predicted on the assumption of linearity. More precisely
speaking, the absolute values of the coefficients of x̂ in

1 , p̂in
1 ,

x̂ in
2 , and p̂in

2 in Eq. (2) are determined from these results. On
the other hand, the signs of the coefficients are not determined
from them. However, they are checked from the phase space
diagrams shown in Figs. 3 and 5. In the above sense, the results
shown so far give full information of the input-output relation
when output modes are separately concerned.

To fully characterize our amplifier, the individual behaviors
of the output modes are not enough, and the correlation
between them has to be estimated. In the following, we are
concerned with the output correlations.

Since unitary PIA is equivalent to two-mode squeezing, the
two output modes should be entangled, and have an EPR type
of correlation. The results of EPR correlation are shown in
Fig. 8. Here, the two input modes are both in vacuum states.
There are two boxes corresponding to x and p correlations.
Lower traces (i) and (ii) show the two-mode squeezing
of x̂out

1 − x̂out
2 and p̂out

1 + p̂out
2 , on the other hand, upper

traces (iii) and (iv) show the two-mode antisqueezing of x̂out
1 +

x̂out
2 and p̂out

1 − p̂out
2 , respectively. They are compared with the
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FIG. 8. (Color online) Two-mode squeezing and antisqueezing
for vacuum inputs. Vertical axes are powers in dB scale normalized
by summed shot noises of two homodyne detections. (i) Black: x̂out

1 −
x̂out

2 . (ii) Black: p̂out
1 + p̂out

2 . (iii) Black: x̂out
1 + x̂out

2 . (iv) Black: p̂out
1 −

p̂out
2 . (v) Cyan: Summed shot noises of two homodyne detections.

(vi) Red: Theory of two-mode squeezing for optimal PIA. (vii) Red:
Theory of two-mode antisqueezing for optimal PIA. (viii) Magenta:
Theory of two-mode squeezing for our PIA with −5-dB squeezed
ancillas. (ix) Blue: Theory of two-mode squeezing for our PIA with
vacuum ancillas.
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summed shot noises of the two homodyne detections shown by
traces (v). Several theoretical lines are plotted together.
Lines (vi) and (vii) are the theoretical values of two-mode
squeezing and antisqueezing for the optimal PIA, respectively.
Our results of two-mode squeezing are degraded from the ideal
case due to finite squeezing of ancillas. Assuming −5-dB
squeezing for ancillas, theoretical expectation is marked by
lines (viii); that for vacuum ancillas is also marked by
lines (ix), which is exactly equal to the shot noise level of 0 dB.
In contrast, the theoretical two-mode antisqueezing is always
ideal for arbitrary ancillas. The experimental results agree well
with the theory assuming −5-dB squeezing of ancillas. Since
traces (i) and (ii) are both below the shot noises of traces (v),
existence of entanglement is verified between the two output
modes via the Duan-Simon criterion [35,36].

From the nonclassical correlation between the two output
modes, we investigate the reversibility. For this purpose,
we virtually realize the inverse transformation electrically
and reconstruct the initial quadratures. Neglecting the excess
noise from finite ancillas, the PIA that we demonstrate
has the input-output relation as âout

1 = √
2âin

1 + (âin
2 )†, âout

2 =√
2âin

2 + (âin
1 )†, which is obtained by substituting G = 2 and

θ = 0 into Eq. (1). The inverse transformation becomes as
âout

1 = √
2âin

1 − (âin
2 )†, âout

2 = √
2âin

2 − (âin
1 )† or, equivalently,

x̂out
1 =

√
2x̂ in

1 − x̂ in
2 , x̂out

2 =
√

2x̂ in
2 − x̂ in

1 , (9a)

p̂out
1 =

√
2p̂in

1 + p̂in
2 , p̂out

2 = √
2p̂in

2 + p̂in
1 . (9b)

Therefore, by adding or subtracting the two homodyne out-
comes with a 3.0-dB difference of gains, the initial quadratures
are reconstructed. The reconstructed quadratures are denoted
by the superscripts “rec” in the following. Note that the initial
quantum state is not recovered in the experiment. In addition,
note also that only one of two quadratures x̂ or p̂ can be
reconstructed in each moment, and never both simultaneously.
The recovery of the initial state is possible only when either
a quantum channel is between the signal and idler outputs
[29] or ancilla entanglement is utilized [14,37]. However,
the demonstrated reconstruction of the initial quadratures can
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FIG. 10. (Color online) Powers of initial quadratures recon-
structed from output correlations. One of four input quadratures
x̂ in

1 , p̂in
1 , x̂ in

2 , and p̂in
2 is excited and, at the same time, the other

three quadratures are left at the vacuum level. Vertical axes are
powers in dB scale normalized by shot noises. (i) Magenta:
Excited input quadratures. (ii) Red: Reconstructed quadratures
with excitation in inputs. (iii) Black: Reconstructed quadratures
without excitation in inputs. (iv) Cyan: Shot noises of a single
homodyne detection. (v) Cyan: Summed shot noises of two homodyne
detections.
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show that necessary correlations for the recovery of the initial
state are present.

In Fig. 9, the results of such reconstruction of initial vacuum
fluctuations are shown. There are four boxes corresponding to
the four reconstructed quadratures x̂rec

1 , p̂rec
1 , x̂rec

2 , and p̂rec
2 .

The powers of the reconstructed quadratures are shown by
traces (i). Traces (ii) are the powers of the summed shot noises
of the two homodyne detections, which are taken with the
same electric gains as traces (i). Note that the lower levels of
traces (i) than traces (ii) are due to the nonclassical correlation.
From Eq. (9), the summed shot noises (ii) should have three
times larger variances than those corresponding to the initial
vacuum fluctuations. Thus, we infer the original vacuum level
to be 4.8 dB below the measured sum of the shot noises (ii).
All results shown here are normalized by the inferred vacuum
level. For the optimal PIA, vacuum fluctuations are perfectly
reconstructed, thus, the theoretical expectation coincides with
the vacuum level of 0 dB, which is marked by lines (iii). The
increases of traces (i) from 0 dB show the imperfection of our
PIA. The theoretical values for −5-dB squeezing of, and no
squeezing of, ancillas are marked by lines (iv) and lines (v),
respectively. The experimental results of traces (i) are in good
agreement with lines (iv).

Next, we pay attention to the reconstruction of mean
amplitude, using coherent states as inputs. The results are
shown in Fig. 10. The four input quadratures, namely, x̂ in

1 ,
p̂in

1 , x̂ in
2 , and p̂in

2 , are excited one by one, as shown in the
leftmost boxes of the four subfigures. For each excitation, the
powers of the four reconstructed quadratures are measured,
the results of which are put in the other four boxes on the
right side. For the leftmost box, trace (i) is the power of
the excited input quadrature and trace (iv) is the power of
the shot noise of the corresponding homodyne detection. The
increase of trace (i) from trace (iv) indicates the excitation.
For the other four boxes, traces (ii) and (iii) show the powers
of the reconstructed quadratures with and without the input
excitation, respectively, and traces (v) are the summed shot
noise powers of the two homodyne detections. Similar to
Fig. 9, one third of the summed shot noise power is used for
normalization. The reconstructed quadratures (ii) are excited
almost to the same levels as the input quadratures (i) at the
excited quadratures, whereas they remain unchanged from the
nonexcited levels (iii) at the nonexcited quadratures.

All the results shown above prove the success of our
demonstration of PIA. They agree well with the theoretical
calculations assuming −5 dB of squeezing for ancillas.

VI. EXPERIMENTAL RESULTS FOR CLONER

We show next the results of the cloning experiment in a
manner similar to the PIA experiment, i.e., quadrature data
and the phase space diagrams reconstructed from them are
used for intuitive understanding and also for a check of the
mirror image that is found in the anticlone; the full verification
is given by the power analysis for various input states. In the
following, since the representation and interpretation of results
are almost the same as those for the PIA experiment, we give
only a short description of them. The signal input of PIA is
denoted by the term “original,” and the resulting two clones
and one anticlone are denoted by “clone-1,” “clone-2,” and
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FIG. 11. (Color online) Quadrature data. The phases of homo-
dyne measurements are scanned from 0 to 2π , which correspond to
horizontal axes. Vertical axes are quadrature values.

“anticlone,” respectively. There are also abbreviations of these
terms as “org,” “cln-1,” “cln-2,” and “a-cln” in the figures and
mathematical expressions. Occasionally, the term “input” is
used to indicate the original and “output” to indicate the two
clones and one anticlone.

Figure 11 shows the quadrature data. From an original (a)
in a coherent state, two clones (b) and (c) and an anticlone (d)
are produced. We see that the original and the two clones have
almost the same sinusoidal curves of the mean amplitudes,
although the fluctuations are uniformly increased in the clones.
On the other hand, the anticlone has the same sinusoid when
the phase is flipped.

Figure 12 is the phase space diagram computed from
the quadrature data shown in Fig. 11. The first and second
moments of each distribution are represented by an ellipse.
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FIG. 12. (Color online) Phase space distributions computed from
the quadrature data in Fig. 11. The first and second moments of
Gaussian Wigner functions are expressed by ellipses. (i) Green:
Original. (ii) Red: Clone-1. (iii) Magenta: Clone-2. (iv) Blue:
Anticlone.
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for optimal cloner. (iv) Magenta: Theory for our cloner with −5-dB
squeezed ancillas. (v) Blue: Theory for our cloner with vacuum
ancillas.

Next to the experimental diagram (a), theoretical calculations
for the optimal cloning are depicted in (b). The two ellipses of
the clones (ii) and (iii) in the experimental diagram are almost
overlapped. The centers of the two clones (ii) and (iii) are
almost the same as that of the original (i), whereas the radii
of the clones are larger than that of the original. On the other
hand, the anticlone (iv) has a different center, where the sign
of p quadrature is opposite to that of the original.

We move on to the power analysis. First, we show the
powers of the output quadratures (shown in Figs. 13 and 14),
and then their correlations (shown in Figs. 15, 16, and 17).
Figure 13 shows the cloning of a vacuum state, and Fig. 14
shows the cloning of several coherent states.

In Fig. 13, there are six boxes corresponding to six output
quadratures, namely, x̂cln-1, p̂cln-1, x̂cln-2, p̂cln-2, x̂a-cln, and
p̂a-cln. For each box, there are two experimental traces. Traces
(i) are the powers of the output quadratures. Traces (ii) are the
shot noise powers used for normalization, which are equal to
the powers of the input quadratures. There are also three kinds
of theoretical lines. Lines (iii) are for the optimal cloning, and
lines (iv) and (v) are for our cloning using −5-dB squeezed
and vacuum ancillas for PIA, respectively. Note that lines
(iii) at 3.0 dB for clones correspond to the cloning limit.
From these results, cloning fidelities are estimated at F =
0.63 ± 0.01 for a vacuum original, which is higher than the
classical limit of F = 1/2 and very close to the cloning limit
of F = 2/3.

In Fig. 14, there are two subfigures (a) and (b) corre-
sponding to excitations in x̂org and p̂org, respectively. Each
subfigure is composed of seven boxes, where the leftmost
one shows the input excitation in x̂org or p̂org and the other
six boxes show the output quadratures of x̂cln-1, p̂cln-1, x̂cln-2,
p̂cln-2, x̂a-cln, and p̂a-cln. Trace (i) shows the power of the
excited input quadrature. Traces (ii) and (iii) show the output
powers with and without the input excitation (i), respectively.
Traces (iv) are the shot noise powers used for normalization.
When we excite one quadrature of the original, the same
quadratures in the three output modes are excited to almost
the same level, whereas the conjugate quadratures do not
change.

Our remaining concerns are the output correlations and
the reversibility. First, in Fig. 15, we show EPR correla-
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FIG. 14. (Color online) Output powers for originals in several
coherent states. One of two original quadratures x̂org and p̂org is excited
and, at the same time, the other quadrature is left at the vacuum level.
Vertical axes are powers in dB scale normalized by shot noises. (i)
Magenta: Excited original quadratures. (ii) Red: Output quadratures
with excitation in originals. (iii) Black: Output quadratures without
excitation in originals. (iv) Cyan: Shot noises.

tion between each clone and the anticlone as a sufficient
condition for entanglement. The correlation between the
clone-1 and the anticlone is shown in Fig. 15(a), and
that between the clone-2 and the anticlone is shown in
Fig. 15(b). By electrically adding or subtracting the two
homodyne signals with the same electric gains, four ob-
servables are measured, namely, x̂cln-1 − x̂a-cln, p̂cln-1 + p̂a-cln,
x̂cln-2 − x̂a-cln, and p̂cln-2 + p̂a-cln, which are separately con-
tained in boxes and shown as traces (i) and (ii). These
traces are all below the summed shot noises of traces (iii).
From these results, we verify bipartite entanglement between
each clone and the anticlone from the Duan-Simon criterion
[35,36] and, eventually, tripartite entanglement of class-1
where none of three partial systems is separable from the
others [13]. Theoretical lines (iv), (v), and (vi) are plotted
together, corresponding to infinite squeezing, finite squeezing
of −5 dB, and no squeezing of ancillas for PIA, respectively.
The experimental results of traces (i) agree well with lines (v).

Using the nonclassical correlations, we reconstruct the orig-
inal quadratures. The reconstructed quadratures are denoted
by x̂rec and p̂rec. The results for a vacuum state are shown in
Fig. 16, and those for coherent states are shown in Fig. 17.
For the reconstruction, three homodyne signals are added with
the same electric gains and appropriate signs. For a similar
reason to the PIA experiment, the summed shot noise has three
times larger variance than that corresponding to the vacuum
fluctuation of the original. Thus, one third of the summed shot
noise power is used for normalization.
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FIG. 15. (Color online) EPR correlation between each clone and
the anticlone. Vertical axes are powers in dB scale normalized
by summed shot noises of two homodyne detections. (i) Black:
x̂cln − x̂a−cln. (ii) Black: p̂cln + p̂a−cln. Here, the subscripts “cln”
denote clone-1 for (a) and clone-2 for (b). (iii) Cyan: Summed shot
noises of two homodyne detections. (iv) Red: Theory for optimal
cloner. (v) Magenta: Theory for our cloner with −5-dB squeezed
ancillas. (vi) Blue: Theory for our cloner with vacuum ancillas.

In Fig. 16, the powers of the reconstructed vacuum
fluctuations are plotted as traces (i) and compared to that of the
summed shot noises plotted as traces (ii). Traces (i) are below
traces (ii) for both x̂rec and p̂rec due to nonclassical correlations.
Theoretical expectations are also shown as lines (iii), (iv), and
(v) corresponding to the three different conditions of infinite
squeezing, finite squeezing of −5 dB, and no squeezing of an-
cillas, respectively. The perfect reconstruction corresponding
to 0 dB is marked by lines (iii), which is not achieved in the
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FIG. 16. (Color online) Powers of initial vacuum fluctuations
reconstructed from output correlations. Vertical axes are powers in dB
scale normalized by shot noises. (i) Black: Reconstructed quadratures.
(ii) Cyan: Summed shot noises of three homodyne detections.
(iii) Red: Theory for optimal cloner. (iv) Magenta: Theory for our
cloner with −5-dB squeezed ancillas. (v) Blue: Theory for our cloner
with vacuum ancillas.
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FIG. 17. (Color online) Powers of initial quadratures recon-
structed from output correlations. One of two original quadratures
x̂org and p̂org is excited and, at the same time, the other quadrature
is left at the vacuum level. Vertical axes are powers in dB scale
normalized by shot noises. (i) Magenta: Excited original quadratures.
(ii) Red: Reconstructed quadratures with excitation in originals. (iii)
Black: Reconstructed quadratures without excitation in originals. (iv)
Cyan: Shot noises of a single homodyne detection. (v) Cyan: Summed
shot noises of three homodyne detections.

experiment due to the finite squeezing of ancillas. The results
are degraded almost to the level of lines (iv), as expected from
the theory. However, they are still slightly below 3.0 dB, which
corresponds to the cloning limit. From these results, the fidelity
of reconstruction is calculated for a vacuum state. A perfect
unitary cloning allows the reconstruction fidelity of F = 1.
The experimental value is calculated as F = 0.74 ± 0.01,
which is higher than the cloning limit of F = 2/3. The cloning
limit can be considered as the classical limit for the recovery
of the original state because one can never obtain a better
approximation of the original state than the clones if the
nonclassical correlations between the clones and anticlones
can not be exploited.

In Fig. 17, the input quadratures x̂org and p̂org are excited
one by one and, for each case, they are reconstructed from
the output correlations. Trace (i) in the leftmost box is the
power of the excited original quadrature, whereas trace (iv)
in the same box is the power of the corresponding shot noise.
Traces (ii) and (iii) in the other two boxes on the right side are
the powers of the reconstructed quadratures with and without
the excitation, respectively, and traces (v) at 4.8 dB are the
powers of the summed shot noises of the three homodyne
detections. At the excited quadrature, almost the same level
of excitation is reconstructed. In contrast, at the conjugate
quadrature, no effect of the excitation is observed.
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VII. SUMMARY

We succeeded in phase-insensitive optical amplification in
a reversible manner. Our amplifier preserves the idler output.
The entanglement between the signal and idler is responsible
for the reversibility. The scheme is basically based on linear
optics, homodyne measurements, and feedforward. Offline-
prepared squeezed states, which are used as ancillas, provide
nonclassical properties for our PIA. We demonstrated for
the amplification gain of G = 2.0. By splitting the amplified
output in half, we also demonstrated 1 → 2 approximate
cloning of coherent states, where the remaining idler output
was interpreted as the anticlone.

For both experiments, the full demonstration was given in
the following sequence. First, we characterized the individual
output modes. By treating the quadrature data directly, they
were visualized as phase space diagrams to help intuitive
understanding. In particular, the mirror image in the idler
output or the anticlone is shown. Then, the input-output
relation was examined more strictly by using several different
coherent states as inputs. Finally, the output correlations
were examined. They are important because the nonclassical
properties are only accessible via them. Not only were the
ordinary EPR correlations shown, but the possibility of the
reverse operation also was directly presented by appropriate
measurements of the correlations.

Our results are a good demonstration that shows the proper-
ties of an amplification process, which has been theoretically
known for decades but not fully demonstrated experimentally.
In particular, it is reversible when the idler is present. Such
reversible amplification is significant from practical respects,
as is shown in Refs. [14,29]. We did not demonstrate the reverse
operation, but showed its possibility from the correlations. The
recovery of the signal state only requires the Bell measurement
and feedforward [14,29], which would be much less lossy
and noisy than implementing the inverse transformation. Full
and partial recovery of the distributed information via such a
feedforward scheme is left for future experiments.
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APPENDIX : GENERAL NUMBER OF CLONES

In this appendix, the discussion in Sec. III is extended to
K → L CV cloning. The optimal K → L cloning satisfies the
relation below [20]:

(
L∑

k=1

√
nk

)2

= (L − K)

(
L∑

k=1

nk + 1

)
. (A1)

The optimality of Eq. (A1) is proven with respect to the cost
function constructed from the variances [20]

C(n1, . . . ,nL) =
L∑

k=1

cknk. (A2)

In particular, for the symmetric cloning, i.e., n1 = . . . = nL ≡
n, Equation (A1) saturates the following inequality, which is
obtained in Ref. [38] from the consistency with the uncertainty
relation:

n �
(

1

K
− 1

L

)
. (A3)

The limit fidelity for symmetric Gaussian cloning is calculated
as F = KL/(KL − K + L). On the other hand, taking the
limit that L goes to infinity, the classical limit of cloning (i.e.,
the limit of state estimation) is obtained as F = K/(K + 1).

The optimal procedure of K → L symmetric cloning can
be decomposed into three steps as follows [25,26]. First, all
the information of (xd,pd) is compressed into a single mode
by a beamsplitter network. A state with larger amplitude
D̂(

√
Kxd,

√
Kpd)|ψ〉 is created from the K identical originals

D̂(xd,pd)|ψ〉 in this step. Second, the combined signal is
amplified with the gain G = L/K . Finally, the amplified
signal is combined with L − 1 ancillas by another beam-
splitter network, creating L clones. For asymmetric cloning,
the procedure is essentially the same, but the amplification in
the second step is applied to a part of the combined signal,
and the gain is changed correspondingly as G = 1 + ∑L

k=1 nk

[20]. On the other hand, L − K anticlones are obtained from
the idler output by combining it with L − K − 1 ancillas
by another beamsplitter network. Therefore, as a whole, L

clones and L − K anticlones are obtained, the complex mean
amplitudes of which are α and α∗, respectively, from K

originals with the complex mean amplitude of α ≡ xd + ipd.
With regard to cloning of coherent states, it is evident that there
is no entanglement among clones or anticlones, however, there
is entanglement between a clone and an anticlone.

The optimal asymmetric clones have the following form:

âcln-k = 1√
K

â′
org + √

nkâ
†
idl +

L−1∑
k=1

κk�âanc-�, (A4)

where âcln-k is the annihilation operator of the kth clone, â′
org

is that of the combined original after the first step, âidl is that
of the idler input, and âanc-� is that of the �th ancilla input
for the latter beamsplitter network. The coefficients

√
nk and

κk� are not independent in order to preserve the commutation
relations. By setting all the ancillas in vacuum states, the added
noises become rotationally symmetric and Gaussian, and their
variances correspond to the parameters nk [39]. As with 1 → 2
cloning, optimal 1 → L cloning can be fully reversed by L − 1
Bell measurements performed on each set of a clone and
an anticlone and subsequent feedforward to the remaining
single clone [29]. Even with the smaller number of Bell
measurements, the original is partially recovered accordingly.
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